cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112698 Partial sum of (Catalan numbers A000108 multiplied by powers of 4).

Original entry on oeis.org

1, 5, 37, 357, 3941, 46949, 587621, 7616357, 101332837, 1375876965, 18987759461, 265554114405, 3755416368997, 53610591434597, 771525112379237, 11181285666076517, 163041321978836837, 2390321854565988197
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Fifth column (m=4) of triangle A112705.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-16*x])/(8*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
    With[{nn=20},Accumulate[4^Range[0,nn] CatalanNumber[Range[0,nn]]]] (* Harvey P. Dale, Mar 11 2023 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-16*x))/(8*x*(1-x))) \\ G. C. Greubel, Mar 17 2017

Formula

a(n) = Sum_{k=0,..,n} C(k)*4^k, n>=0, with C(n):=A000108(n).
G.f.: c(4*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = (17*n-7)*a(n-1) - 8*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 16^(n+1)/(15*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

Extensions

Definition clarified by Harvey P. Dale, Mar 11 2023