A112698 Partial sum of (Catalan numbers A000108 multiplied by powers of 4).
1, 5, 37, 357, 3941, 46949, 587621, 7616357, 101332837, 1375876965, 18987759461, 265554114405, 3755416368997, 53610591434597, 771525112379237, 11181285666076517, 163041321978836837, 2390321854565988197
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Crossrefs
Fifth column (m=4) of triangle A112705.
Programs
-
Mathematica
CoefficientList[Series[(1-Sqrt[1-16*x])/(8*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *) With[{nn=20},Accumulate[4^Range[0,nn] CatalanNumber[Range[0,nn]]]] (* Harvey P. Dale, Mar 11 2023 *)
-
PARI
x='x+O('x^50); Vec((1-sqrt(1-16*x))/(8*x*(1-x))) \\ G. C. Greubel, Mar 17 2017
Formula
a(n) = Sum_{k=0,..,n} C(k)*4^k, n>=0, with C(n):=A000108(n).
G.f.: c(4*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = (17*n-7)*a(n-1) - 8*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 16^(n+1)/(15*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
Extensions
Definition clarified by Harvey P. Dale, Mar 11 2023