cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112701 Partial sum of Catalan numbers (A000108) multiplied by powers of 7.

Original entry on oeis.org

1, 8, 106, 1821, 35435, 741329, 16270997, 369570944, 8613236374, 204812473608, 4949266755812, 121188396669810, 3000342229924222, 74979188061284522, 1888846103011564082, 47915719069874907917, 1222954711282739097587
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Column m=7 of triangle A112705.
Partial sums of A156266.

Programs

  • Maple
    f:= gfun:-rectoproc({(n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0,a(0)=1,a(1)=8},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Aug 04 2020
  • Mathematica
    CatalanNumber[#]*7^#& /@ Range[0, 20] // Accumulate (* Jean-François Alcover, Aug 29 2022 *)

Formula

a(n) = Sum_{k=0..n} A000108(k)*7^k.
G.f.: c(7*x)/(1-x), where c(x) = (1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: (n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016
Conjecture verified using the d.e. (28*x^3-29*x^2+x)*y' + (42*x^2-16*x+1)*y=1 satisfied by the g.f. - Robert Israel, Aug 04 2020
a(n) = 7^n*binomial(2*n, n)*(1 - hypergeom([1, n+1/2], [n+2], 28))/(n+1) + (1 - 3*sqrt(3)*i)/14, where i denotes the imaginary units. - Stefano Spezia, Mar 31 2025