A112718 Numbers m such that pi(m) = 1^d_1 + 2^d_2 + ... + k^d_k where d_1 d_2 ... d_k is the decimal expansion of m.
2, 12, 23, 113, 151, 5924, 14254, 106545, 1915765, 2798136, 31749441, 35282317, 35389065, 35389165, 105227821, 141291863, 193789064, 326730783, 839512048, 882012907, 884676937, 2780026914, 2997751947, 8493184690, 8493955191
Offset: 1
Examples
326730783 is in the sequence because pi(326730783) = 1^3 + 2^2 + 3^6 + 4^7 + 5^3 + 6^0 + 7^7 + 8^8 + 9^3 = 17618732.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..33 (full sequence)
Programs
-
Mathematica
Do[d=IntegerDigits[n];k=Length[d];If[PrimePi[n]==Sum[j^d[[j]], {j, k}], Print[n]], {n, 410000000}]
Extensions
a(19)-a(25) from Donovan Johnson, Nov 09 2010
Comments