cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112742 a(n) = n^2*(n^2 - 1)/3.

Original entry on oeis.org

0, 0, 4, 24, 80, 200, 420, 784, 1344, 2160, 3300, 4840, 6864, 9464, 12740, 16800, 21760, 27744, 34884, 43320, 53200, 64680, 77924, 93104, 110400, 130000, 152100, 176904, 204624, 235480, 269700, 307520, 349184, 394944, 445060, 499800, 559440
Offset: 0

Views

Author

Matthew T. Cornick (maruth(AT)gmail.com), Sep 16 2005

Keywords

Comments

Second derivative of the n-th Chebyshev polynomial (of the first kind) evaluated at x=1.
The second derivative at x=-1 is just (-1)^n * a(n).
The difference between two consecutive terms generates the sequence a(n+1) - a(n) = A002492(n).
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, |q-p| and |q-p|. - Wesley Ivan Hurt, Apr 15 2018

Examples

			a(4)=80 because
C_4(x) = 1 - 8x^2 + 8x^4,
C'_4(x) = -16x + 32x^3,
C''_4(x) = -16 + 96x^2,
C''_4(1) = -16 + 96 = 80.
		

Crossrefs

Programs

  • Mathematica
    Table[D[ChebyshevT[n, x], {x, 2}], {n, 0, 100}] /. x -> 1
  • PARI
    a(n)=n^2*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (n-1)*n^2*(n+1)/3 = 4*A002415(n).
a(n) = 2*( A000914(n-1) + C(n+1,4) ). - David Scambler, Nov 27 2006
From Colin Barker, Jan 26 2012: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 4*x^2*(1+x)/(1-x)^5. (End)
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/3. - Stefano Spezia, Dec 11 2021
a(n) = A053126(n+2) - A006324(n-1). - Yasser Arath Chavez Reyes, Feb 22 2024