A112742 a(n) = n^2*(n^2 - 1)/3.
0, 0, 4, 24, 80, 200, 420, 784, 1344, 2160, 3300, 4840, 6864, 9464, 12740, 16800, 21760, 27744, 34884, 43320, 53200, 64680, 77924, 93104, 110400, 130000, 152100, 176904, 204624, 235480, 269700, 307520, 349184, 394944, 445060, 499800, 559440
Offset: 0
Examples
a(4)=80 because C_4(x) = 1 - 8x^2 + 8x^4, C'_4(x) = -16x + 32x^3, C''_4(x) = -16 + 96x^2, C''_4(1) = -16 + 96 = 80.
Links
- Eric Weisstein's World of Mathematics, Chebyshev polynomials of the first kind
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[D[ChebyshevT[n, x], {x, 2}], {n, 0, 100}] /. x -> 1
-
PARI
a(n)=n^2*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (n-1)*n^2*(n+1)/3 = 4*A002415(n).
a(n) = 2*( A000914(n-1) + C(n+1,4) ). - David Scambler, Nov 27 2006
From Colin Barker, Jan 26 2012: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 4*x^2*(1+x)/(1-x)^5. (End)
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/3. - Stefano Spezia, Dec 11 2021
Comments