cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112789 Primes such that the sum of the predecessor and successor primes is divisible by 11.

Original entry on oeis.org

31, 43, 67, 109, 131, 139, 191, 617, 727, 881, 911, 937, 953, 991, 1049, 1289, 1381, 1429, 1543, 1571, 1619, 1657, 1693, 1721, 1723, 1777, 1783, 1871, 1979, 2251, 2311, 2341, 2377, 2441, 2531, 2579, 2837, 2953, 3061, 3221, 3257, 3557, 3559, 3631, 3673
Offset: 1

Views

Author

Jonathan Vos Post, Jan 01 2006

Keywords

Examples

			a(1) = 31 because prevprime(31) + nextprime(31) = 29 + 37 = 66 = 11 * 6.
a(2) = 43 because prevprime(43) + nextprime(43) = 41 + 47 = 88 = 11 * 8.
a(3) = 67 because prevprime(67) + nextprime(67) = 61 + 71 = 132 = 11 * 12.
a(4) = 109 because prevprime(109) + nextprime(109) = 107 + 113 = 220 = 11 * 20.
		

Crossrefs

Programs

  • Mathematica
    Prime@ Select[Range[2, 515], Mod[Prime[ # - 1] + Prime[ # + 1], 11] == 0 &] (* Robert G. Wilson v *)
    Transpose[Select[Partition[Prime[Range[550]],3,1],Divisible[First[#]+ Last[#], 11]&]][[2]] (* Harvey P. Dale, Jul 22 2011 *)

Formula

a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 11. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 11.

Extensions

More terms from Robert G. Wilson v, Jan 05 2006