A112789 Primes such that the sum of the predecessor and successor primes is divisible by 11.
31, 43, 67, 109, 131, 139, 191, 617, 727, 881, 911, 937, 953, 991, 1049, 1289, 1381, 1429, 1543, 1571, 1619, 1657, 1693, 1721, 1723, 1777, 1783, 1871, 1979, 2251, 2311, 2341, 2377, 2441, 2531, 2579, 2837, 2953, 3061, 3221, 3257, 3557, 3559, 3631, 3673
Offset: 1
Examples
a(1) = 31 because prevprime(31) + nextprime(31) = 29 + 37 = 66 = 11 * 6. a(2) = 43 because prevprime(43) + nextprime(43) = 41 + 47 = 88 = 11 * 8. a(3) = 67 because prevprime(67) + nextprime(67) = 61 + 71 = 132 = 11 * 12. a(4) = 109 because prevprime(109) + nextprime(109) = 107 + 113 = 220 = 11 * 20.
Crossrefs
Programs
-
Mathematica
Prime@ Select[Range[2, 515], Mod[Prime[ # - 1] + Prime[ # + 1], 11] == 0 &] (* Robert G. Wilson v *) Transpose[Select[Partition[Prime[Range[550]],3,1],Divisible[First[#]+ Last[#], 11]&]][[2]] (* Harvey P. Dale, Jul 22 2011 *)
Formula
Extensions
More terms from Robert G. Wilson v, Jan 05 2006