A112795 Primes such that the sum of the predecessor and successor primes is divisible by 13.
79, 103, 139, 233, 271, 389, 401, 457, 587, 619, 641, 769, 883, 967, 1013, 1031, 1153, 1213, 1249, 1289, 1301, 1429, 1523, 1559, 1571, 1699, 1721, 1789, 1847, 1901, 2039, 2089, 2111, 2273, 2297, 2459, 2579, 2593, 2663, 3359, 3371, 3373, 3449, 3491, 3527
Offset: 1
Examples
a(1) = 79 because prevprime(79) + nextprime(79) = 73 + 83 = 156 = 13 * 12. a(2) = 103 because prevprime(103) + nextprime(103) = 101 + 107 = 208 = 13 * 16. a(3) = 139 because prevprime(139) + nextprime(139) = 137 + 149 = 286 = 13 * 22. a(4) = 233 because prevprime(233) + nextprime(233) = 229 + 239 = 468 = 13 * 36.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Prime@ Select[Range[2, 496], Mod[Prime[ # - 1] + Prime[ # + 1], 13] == 0 &] (* Robert G. Wilson v *) Select[Partition[Prime[Range[500]],3,1],Divisible[#[[1]]+#[[3]],13]&] [[All,2]] (* Harvey P. Dale, Apr 06 2022 *)
Formula
Extensions
More terms from Robert G. Wilson v, Jan 05 2006
Comments