A112796 Primes such that the sum of the predecessor and successor primes is divisible by 17.
151, 191, 199, 421, 491, 613, 829, 883, 937, 1409, 1447, 1459, 1667, 1693, 1871, 2027, 2203, 2347, 2381, 2503, 2687, 2857, 2957, 3041, 3121, 3259, 3517, 3557, 3571, 3583, 3847, 3929, 4153, 4271, 4591, 4793, 4999, 5011, 5051, 5273, 5323, 5407, 5441, 5449
Offset: 1
Examples
a(1) = 151 because prevprime(151) + nextprime(151) = 149 + 157 = 306 = 17 * 8. a(2) = 191 because prevprime(191) + nextprime(191) = 181 + 193 = 374 = 17 * 22. a(3) = 199 because prevprime(199) + nextprime(199) = 197 + 211 = 408 = 17 * 24. a(4) = 421 because prevprime(421) + nextprime(421) = 419 + 431 = 850 = 17 * 50.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Prime@ Select[Range[2, 731], Mod[Prime[ # - 1] + Prime[ # + 1], 17] == 0 &] (* Robert G. Wilson v *) Select[Partition[Prime[Range[800]],3,1],Divisible[#[[1]]+#[[3]],17]&][[All,2]] (* Harvey P. Dale, Oct 06 2020 *)
Formula
Extensions
More terms from Robert G. Wilson v, Jan 05 2006
Comments