A112802 Number of ways of representing 2n-1 as sum of three integers with 3 distinct prime factors.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2
Offset: 1
Keywords
Examples
a(83) = 1 because the only partition into three integers each with 3 distinct prime factors of (2*83)-1 = 165 is 165 = 30 + 30 + 105 = (2*3*5) + (2*3*5) + (3*5*7). Coincidentally, 165 itself has three distinct prime factors 165 = 3 * 5 * 11. a(89) = 1 because the only partition into three integers each with 3 distinct prime factors of (2*89)-1 = 177 = 30 + 42 + 105 = (2*3*5) + (2*3*7) + (3*5*7). a(107) = 2 because the two partitions into three integers each with 3 distinct prime factors of (2*107)-1 = 213 are 213 = 30 + 78 + 105 = 42 + 66 + 105.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1290
- Xianmeng Meng, On sums of three integers with a fixed number of prime factors, Journal of Number Theory, Vol. 114 (2005), pp. 37-65.
Programs
-
Maple
isA033992 := proc(n) numtheory[factorset](n) ; if nops(%) = 3 then true; else false; end if; end proc: A033992 := proc(n) option remember; local a; if n = 1 then 30; else for a from procname(n-1)+1 do if isA033992(a) then return a; end if; end do: end if; end proc: A112802 := proc(n) local a,i,j,p,q,r,n2; n2 := 2*n-1 ; a := 0 ; for i from 1 do p := A033992(i) ; if 3*p > n2 then return a; else for j from i do q := A033992(j) ; r := n2-p-q ; if r < q then break; end if; if isA033992(r) then a := a+1 ; end if; end do: end if ; end do: end proc: for n from 1 do printf("%d %d\n",n,A112802(n)); end do: # R. J. Mathar, Jun 09 2014
Comments