A112804 Primes such that the sum of the predecessor and successor primes is divisible by 19.
59, 97, 683, 797, 821, 1049, 1307, 1579, 1709, 1787, 1913, 2029, 2143, 2161, 2281, 2339, 2393, 2437, 2557, 2659, 2791, 2851, 2887, 3389, 3413, 3533, 3557, 3643, 3779, 3853, 4177, 4241, 4447, 4507, 4583, 4957, 4973, 5119, 5641, 5813, 6043, 6133, 7069
Offset: 1
Examples
a(1) = 59 because prevprime(59) + nextprime(59) = 53 + 61 = 114 = 19 * 6. a(2) = 97 because prevprime(97) + nextprime(97) = 89 + 101 = 190 = 19 * 10. a(3) = 683 because prevprime(683) + nextprime(683) = 677 + 691 = 1368 = 19 * 72. a(4) = 797 because prevprime(797) + nextprime(797) = 787 + 809 = 1596 = 19 * 84.
Crossrefs
Programs
-
Mathematica
Prime@ Select[Range[2, 912], Mod[Prime[ # - 1] + Prime[ # + 1], 19] == 0 &] (* Robert G. Wilson v *)
Formula
Extensions
More terms from Robert G. Wilson v, Jan 05 2006
Comments