cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112805 Expansion of solution of functional equation.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 11, 21, 37, 66, 127, 261, 545, 1119, 2255, 4529, 9202, 18989, 39566, 82614, 172272, 359159, 750699, 1575649, 3319942, 7012833, 14834345, 31414423, 66619692, 141526459, 301202699, 642055773, 1370429491, 2928418794
Offset: 1

Views

Author

Michael Somos, Sep 20 2005

Keywords

Programs

  • PARI
    {a(n)=local(A); if(n<1, 0, A=x+O(x^2); for(k=1,n, A=x+subst(x/(1-x^2),x,x*A)); polcoeff(A,n))}

Formula

G.f. A(x)=y satisfies y=x+(xy)/(1-(xy)^2).
Series reversion of g.f. A(x) is -A(-x).
D-finite with recurrence 16*(n-1)*(1240223*n -6702246)*(n+1)*a(n) +8*(2480446*n^3 -39153654*n^2 +84032501*n +6702246)*a(n-1) +4*(-31385887*n^3 +335465133*n^2 -849400280*n +599382573)*a(n-2) +2*(29566778*n^3 -194324013*n^2 +26628520*n +491525637)*a(n-3) +6*(6680714*n^3 -167765708*n^2 +1031916951*n -1815562235)*a(n-4) +2*(-155507474*n^3+2303856267*n^2 -11150676133*n +17639612322)*a(n-5) +12*(-41500633*n^3 +711522713*n^2 -3909195761*n +6849836674)*a(n-6) +2*(-122699626*n^3 +2534143032*n^2 -16977163481*n +36816733731)*a(n-7) +(n-9)*(33105709*n^2 -338697405*n +802704794)*a(n-8) +8*(n-10)*(9921784*n-30998433)*(n-8)*a(n-9) +4*(n-11)*(13262141*n-65833637)*(n-9)*a(n-10)=0. - R. J. Mathar, Jul 20 2023
a(n+1) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(n-2*k+1,n-4*k)/(n-2*k+1). - Seiichi Manyama, Aug 28 2023