A112847 Primes such that the sum of the predecessor and successor primes is divisible by 23.
229, 277, 317, 461, 643, 919, 1033, 1307, 1427, 1609, 1777, 1789, 2089, 2207, 2347, 2531, 2551, 2647, 2969, 3121, 3169, 3517, 3659, 3701, 3727, 4211, 4421, 4549, 4903, 5039, 5309, 5431, 5867, 5881, 6091, 6211, 6277, 6673, 6781, 6803, 7309, 7499, 8147
Offset: 1
Examples
a(1) = 229 because prevprime(229) + nextprime(229) = 227 + 433 = 460 = 23 * 20. a(2) = 277 because prevprime(277) + nextprime(277) = 271 + 281 = 552 = 23 * 24. a(3) = 317 because prevprime(317) + nextprime(317) = 313 + 331 = 644 = 23 * 28. a(4) = 461 because prevprime(461) + nextprime(461) = 457 + 463 = 920 = 23 * 40.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Prime@ Select[Range[2, 1032], Mod[Prime[ # - 1] + Prime[ # + 1], 23] == 0 &] (* Robert G. Wilson v, Jan 05 2006 *) Select[Partition[Prime[Range[1100]],3,1],Divisible[#[[1]]+#[[3]],23]&][[All,2]] (* Harvey P. Dale, Jul 22 2019 *)
Formula
Extensions
More terms from Robert G. Wilson v, Jan 05 2006
Comments