cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123530 Expansion of q^(-1/2)*eta(q)^2*eta(q^6)^3/(eta(q^2)*eta(q^3)^2) in powers of q.

Original entry on oeis.org

1, -2, 0, 2, -2, 0, 2, 0, 0, 2, -4, 0, 1, -2, 0, 2, 0, 0, 2, -4, 0, 2, 0, 0, 3, 0, 0, 0, -4, 0, 2, -4, 0, 2, 0, 0, 2, -2, 0, 2, -2, 0, 0, 0, 0, 4, -4, 0, 2, 0, 0, 2, 0, 0, 2, -4, 0, 0, -4, 0, 1, 0, 0, 2, -4, 0, 4, 0, 0, 2, 0, 0, 0, -6, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, -4, 0, 2, 0, 0, 2, -4, 0, 0, -4, 0, 2, 0, 0, 2, -4, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 02 2006

Keywords

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]^2*(QP[q^6]^3/(QP[q^2]*QP[q^3]^2)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<0, 0, n=2*n+1; sumdiv(n, d, kronecker(-12,d)*[0,1,0,-2,0,1][n/d%6+1]))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<0, 0, n=2*n+1; A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p==3, -2, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^6+A)^3/eta(x^2+A)/eta(x^3+A)^2, n))}

Formula

Euler transform of period 6 sequence [ -2, -1, 0, -1, -2, -2, ...].
a(n) = b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = -2 if e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} F(x^(6k-5))-F(x^(6k-1)) where F(x)=(x-x^3)/(1+x^2+x^4).
a(3*n+2) = 0.
a(3*n) = A097195(n).
a(3*n+1) = -2*A033762(n).
a(n) = A097109(2*n+1) = A112848(2*n+1).

A253243 Expansion of phi(-x^2) * psi(x^3) * chi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, -2, 2, 0, -4, 1, 0, 0, 2, 0, 0, 3, 0, -4, 2, 0, 0, 2, 0, -2, 0, 0, -4, 2, 0, 0, 2, 0, -4, 1, 0, -4, 4, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, -4, 2, 0, -4, 0, 0, 0, 4, 0, -2, 2, 0, -4, 2, 0, 0, 0, 0, 0, 0, 0, -8, 2, 0, 0, 1, 0, 0, 4, 0, -4, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x^2 + 2*x^3 - 4*x^5 + x^6 + 2*x^9 + 3*x^12 - 4*x^14 + 2*x^15 + ...
G.f. = q - 2*q^9 + 2*q^13 - 4*q^21 + q^25 + 2*q^37 + 3*q^49 - 4*q^57 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2] QPochhammer[ -x^3, x^6] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, [ 0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^12 + A)), n))};

Formula

Expansion q^(-1/4) * eta(q^2)^2 * eta(q^6)^4 / (eta(q^3)^2 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 0, -2, 2, -1, 0, -4, 0, -1, 2, -2, 0, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246650.
a(n) = A123530(2*n) = A097109(4*n + 1) = A112848(4*n + 1) = A123477(4*n + 1). 3 * a(n) = A226535(4*n + 1). -3 * a(n) = A005928(4*n + 1).
a(3*n) = A123884(n). a(3*n + 1) = 0. a(3*n + 2) = -2 * A112605(n).

A260945 Expansion of (2*b(q^4) - b(q) - b(q^2)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

0, 1, 1, -2, -1, 0, -2, 2, 1, -2, 0, 0, 2, 2, 2, 0, -1, 0, -2, 2, 0, -4, 0, 0, -2, 1, 2, -2, -2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, -4, 0, 0, -4, 2, 0, 0, 0, 0, 2, 3, 1, 0, -2, 0, -2, 0, 2, -4, 0, 0, 0, 2, 2, -4, -1, 0, 0, 2, 0, 0, 0, 0, -2, 2, 2, -2, -2, 0, -4, 2
Offset: 0

Views

Author

Michael Somos, Aug 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x + x^2 - 2*x^3 - x^4 - 2*x^6 + 2*x^7 + x^8 - 2*x^9 + 2*x^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 80); A[2] + A[3] - 2*A[4] - A[5] - 2*A[7] + 2*A[8] + A[9] - 2*A[10] + 2*A[13] + 2*A[14] + 2*A[15] - A[17] - 2*A[19] - 4*A[20];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, -1, -1, 0}[[Mod[ d, 6, 1]]] {1, 0, -2, 0, 1, 0}[[Mod[ n/d, 6, 1]]], {d, Divisors @ n}]]
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # == 2, -(-1)^#2, # == 3, -2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(9/2)] EllipticTheta[ 3, 0, q] / (2 q^(1/4) QPochhammer[ q^6]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 1, 0, -1, -1][d%6 + 1] * [0, 1, 0, -2, 0, 1][n\d%6 + 1]))};
    
  • PARI
    {a(n) = if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(-1)^e, p==3, -2, p%6==5, 1-e%2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^18 + A)), n))};
    

Formula

Expansion of (a(q) + a(q^2) - 3*a(q^3) - 2*a(q^4) - 3*a(q^6) + 6*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of q * phi(q) * psi(-q) * psi(-q^9) / f(-q^6) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^4 * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^6) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 1, -3, 1, -2, 1, -2, 1, -2, 0, -3, 1, -1, 1, -3, 1, -2, 1, -2, 1, -2, 1, -3, 1, -1, 1, -3, 0, -2, 1, -2, 1, -2, 1, -3, 1, -2, ...].
Moebius transform is period 36 sequence [ 1, 0, -3, -2, -1, 0, 1, 2, 0, 0, -1, 6, 1, 0, 3, -2, -1, 0, 1, 2, -3, 0, -1, -6, 1, 0, 0, -2, -1, 0, 1, 2, 3, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -(-1)^e if e>0, a(3^e) = -2, if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123863.
a(2*n) = A112848(n). a(2*n + 1) = A123530(n). a(3*n) = -2 * A113447(n). a(3*n + 1) = A227696(n).
a(4*n) = - A112848(n). a(4*n + 1) = A253243(n). a(4*n + 2) = A123530(n). a(4*n + 3) = -2 * A246838(n).
a(6*n) = -2 * A093829(n). a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n). a(6*n + 3) = -2 * A033762(n). a(6*n + 5) = 0.
a(8*n + 1) = A260941(n). a(8*n + 2) = A253243(n). a(8*n + 3) = -2 * A260943(n). a(8*n + 4) = - A123530(n). a(8*n + 5) = 2 * A260942(n). a(8*n + 6) = -2 * A246838(n). a(8*n + 7) = 2 * A260944(n).
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 23 2024
Showing 1-3 of 3 results.