cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005928 G.f.: s(1)^3/s(3), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

Original entry on oeis.org

1, -3, 0, 6, -3, 0, 0, -6, 0, 6, 0, 0, 6, -6, 0, 0, -3, 0, 0, -6, 0, 12, 0, 0, 0, -3, 0, 6, -6, 0, 0, -6, 0, 0, 0, 0, 6, -6, 0, 12, 0, 0, 0, -6, 0, 0, 0, 0, 6, -9, 0, 0, -6, 0, 0, 0, 0, 12, 0, 0, 0, -6, 0, 12, -3, 0, 0, -6, 0, 0, 0, 0, 0, -6, 0, 6, -6, 0, 0, -6, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, -12, 0, 12, 0, 0, 0, -6, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Unsigned sequence is expansion of theta series of hexagonal net with respect to a node.
Cubic AGM theta functions: a(q) (see A004016), b(q) (this: A005928), c(q) (A005882).
Denoted by a_3(n) in Kassel and Reutenauer 2015. - Michael Somos, Jun 04 2015

Examples

			G.f. = 1 - 3*q + 6*q^3 - 3*q^4 - 6*q^7 + 6*q^9 + 6*q^12 - 6*q^13 - 3*q^16 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.34).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(9), 1), 100); A[1] - 3*A[2] + 6*A[4]; // Michael Somos, Jan 31 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, May 24 2013 *)
    a[ n_] := If[ n < 1, Boole[ n==0], -3 Sum[{1, -1, -3, 1, -1, 3, 1, -1, 0}[[ Mod[ d, 9, 1]]], {d, Divisors @ n}]]; (* Michael Somos, Sep 23 2013 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -3 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, if( p%6==1, e+1, !(e%2)))))}; \\ Michael Somos, May 20 2005
    
  • PARI
    {a(n) = my(A = x * O(x^n)); polcoeff( eta(x + A)^3 / eta(x^3 + A), n)}; \\ Michael Somos, May 20 2005
    
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, -3, 3, 9, -3, 3, -9, -3, 3] [d%9 + 1]))}; \\ Michael Somos, Dec 25 2007
    
  • PARI
    N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(n)-sigma(3*n))*x^n/n));
    Vec(gf) \\ Joerg Arndt, Jul 30 2011
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q)^3/eta(q^3))} \\ Altug Alkan, Mar 20 2018
    

Formula

a(n) is the coefficient of q^n in b(q)=eta(q)^3/eta(q^3) = (3/2)*a(q^3)-a(q)/2 where a(q)=theta(Hexagonal). - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 07 2002
From Michael Somos, May 20 2005: (Start)
Euler transform of period 3 sequence [ -3, -3, -2, ...].
a(n) = -3 * b(n) except for a(0) = 1, where b()=A123477() is multiplicative with b(p^e) = -2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 2, 5 (mod 6).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - 2*u*w^2 + u^2*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2*u6 - 2*u1*u2*u6 + 4*u2^2*u6 - 3*u2*u3^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1*u2*u3 + u1^2*u3 - 3*u1*u6^2 + u2^2*u3. (End)
a(3*n + 2) = 0. a(3*n + 1) = -A005882(n), a(3*n) = A004016(n). - Michael Somos, Jul 15 2005
a(n) = -3 * A123477(n) unless n=0. |a(n)| = A113062(n).
Moebius transform is period 9 sequence [-3, 3, 9, -3, 3, -9, -3, 3, 0, ...]. - Michael Somos, Dec 25 2007
Expansion of b(q) = a(q^3) - c(q^3) in powers of q where a(), b(), c() are cubic AGM theta functions. - Michael Somos, Dec 25 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(3/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033687.
G.f.: exp( Sum_{n>=1} (sigma(n)-sigma(3*n))*x^n/n ). - Joerg Arndt, Jul 30 2011
a(n) = (-1)^(mod(n, 3) = 1) * A113062(n). - Michael Somos, Sep 05 2014
a(2*n + 1) = -3 * A123530(n). a(4*n) = a(n). a(4*n + 1) = -3 * A253243(n). a(4*n + 2) = 0. a(4*n + 3) = 6 * A246838(n). a(6*n + 1) = -3 * A097195(n). a(6*n + 3) = 6 * A033762(n). - Michael Somos, Jun 04 2015
G.f.: 1 + Sum_{k>0} -3 * x^k / (1 + x^k + x^(2*k)) + 9 * x^(3*k) / (1 + x^(3*k) + x^(6*k)). - Michael Somos, Jun 04 2015
a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017

Extensions

Edited by M. F. Hasler, May 07 2018

A226535 Expansion of b(-q) in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 0, -6, -3, 0, 0, 6, 0, -6, 0, 0, 6, 6, 0, 0, -3, 0, 0, 6, 0, -12, 0, 0, 0, 3, 0, -6, -6, 0, 0, 6, 0, 0, 0, 0, 6, 6, 0, -12, 0, 0, 0, 6, 0, 0, 0, 0, 6, 9, 0, 0, -6, 0, 0, 0, 0, -12, 0, 0, 0, 6, 0, -12, -3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, -6, -6, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Sep 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as f(z) in Case B which is associated with F(t) the g.f. of A006077.

Examples

			G.f. = 1 + 3*q - 6*q^3 - 3*q^4 + 6*q^7 - 6*q^9 + 6*q^12 + 6*q^13 - 3*q^16 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^3 / QPochhammer[ -q^3], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^3, n))}

Formula

Expansion of f(q)^3 / f(q^3) in powers of q where f() is a Ramanujan theta function.
Expansion of 2*b(q^4) - b(q) = b(q^2)^3 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^3 in powers of q.
Euler transform of period 12 sequence [ 3, -6, 2, -3, 3, -4, 3, -3, 2, -6, 3, -2, ...].
Moebius transform is period 36 sequence [ 3, -3, -9, -3, -3, 9, 3, 3, 0, 3, -3, 9, 3, -3, 9, -3, -3, 0, 3, 3, -9, 3, -3, -9, 3, -3, 0, -3, -3, -9, 3, 3, 9, 3, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227696.
G.f.: f(q) = F(t(q)) where F() is the g.f. of A006077 and t() is the g.f. of A227454.
G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^(3*k)).
a(3*n + 2) = a(4*n + 2) = 0.
a(n) = (-1)^n * A005928(n) = (-1)^(((n+1) mod 6 ) > 3) * A113062(n). A113062(n) = |a(n)|.
a(3*n) = A180318(n). a(2*n + 1) = 3 * A123530(n). a(4*n) = A005928(n).

A253243 Expansion of phi(-x^2) * psi(x^3) * chi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, -2, 2, 0, -4, 1, 0, 0, 2, 0, 0, 3, 0, -4, 2, 0, 0, 2, 0, -2, 0, 0, -4, 2, 0, 0, 2, 0, -4, 1, 0, -4, 4, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, -4, 2, 0, -4, 0, 0, 0, 4, 0, -2, 2, 0, -4, 2, 0, 0, 0, 0, 0, 0, 0, -8, 2, 0, 0, 1, 0, 0, 4, 0, -4, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x^2 + 2*x^3 - 4*x^5 + x^6 + 2*x^9 + 3*x^12 - 4*x^14 + 2*x^15 + ...
G.f. = q - 2*q^9 + 2*q^13 - 4*q^21 + q^25 + 2*q^37 + 3*q^49 - 4*q^57 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2] QPochhammer[ -x^3, x^6] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, [ 0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^12 + A)), n))};

Formula

Expansion q^(-1/4) * eta(q^2)^2 * eta(q^6)^4 / (eta(q^3)^2 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 0, -2, 2, -1, 0, -4, 0, -1, 2, -2, 0, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246650.
a(n) = A123530(2*n) = A097109(4*n + 1) = A112848(4*n + 1) = A123477(4*n + 1). 3 * a(n) = A226535(4*n + 1). -3 * a(n) = A005928(4*n + 1).
a(3*n) = A123884(n). a(3*n + 1) = 0. a(3*n + 2) = -2 * A112605(n).

A260945 Expansion of (2*b(q^4) - b(q) - b(q^2)) / 3 in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

0, 1, 1, -2, -1, 0, -2, 2, 1, -2, 0, 0, 2, 2, 2, 0, -1, 0, -2, 2, 0, -4, 0, 0, -2, 1, 2, -2, -2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, -4, 0, 0, -4, 2, 0, 0, 0, 0, 2, 3, 1, 0, -2, 0, -2, 0, 2, -4, 0, 0, 0, 2, 2, -4, -1, 0, 0, 2, 0, 0, 0, 0, -2, 2, 2, -2, -2, 0, -4, 2
Offset: 0

Views

Author

Michael Somos, Aug 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x + x^2 - 2*x^3 - x^4 - 2*x^6 + 2*x^7 + x^8 - 2*x^9 + 2*x^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 80); A[2] + A[3] - 2*A[4] - A[5] - 2*A[7] + 2*A[8] + A[9] - 2*A[10] + 2*A[13] + 2*A[14] + 2*A[15] - A[17] - 2*A[19] - 4*A[20];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, -1, -1, 0}[[Mod[ d, 6, 1]]] {1, 0, -2, 0, 1, 0}[[Mod[ n/d, 6, 1]]], {d, Divisors @ n}]]
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # == 2, -(-1)^#2, # == 3, -2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(9/2)] EllipticTheta[ 3, 0, q] / (2 q^(1/4) QPochhammer[ q^6]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 1, 0, -1, -1][d%6 + 1] * [0, 1, 0, -2, 0, 1][n\d%6 + 1]))};
    
  • PARI
    {a(n) = if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(-1)^e, p==3, -2, p%6==5, 1-e%2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^18 + A)), n))};
    

Formula

Expansion of (a(q) + a(q^2) - 3*a(q^3) - 2*a(q^4) - 3*a(q^6) + 6*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of q * phi(q) * psi(-q) * psi(-q^9) / f(-q^6) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^4 * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^6) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 1, -3, 1, -2, 1, -2, 1, -2, 0, -3, 1, -1, 1, -3, 1, -2, 1, -2, 1, -2, 1, -3, 1, -1, 1, -3, 0, -2, 1, -2, 1, -2, 1, -3, 1, -2, ...].
Moebius transform is period 36 sequence [ 1, 0, -3, -2, -1, 0, 1, 2, 0, 0, -1, 6, 1, 0, 3, -2, -1, 0, 1, 2, -3, 0, -1, -6, 1, 0, 0, -2, -1, 0, 1, 2, 3, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = -(-1)^e if e>0, a(3^e) = -2, if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123863.
a(2*n) = A112848(n). a(2*n + 1) = A123530(n). a(3*n) = -2 * A113447(n). a(3*n + 1) = A227696(n).
a(4*n) = - A112848(n). a(4*n + 1) = A253243(n). a(4*n + 2) = A123530(n). a(4*n + 3) = -2 * A246838(n).
a(6*n) = -2 * A093829(n). a(6*n + 1) = A097195(n). a(6*n + 2) = A033687(n). a(6*n + 3) = -2 * A033762(n). a(6*n + 5) = 0.
a(8*n + 1) = A260941(n). a(8*n + 2) = A253243(n). a(8*n + 3) = -2 * A260943(n). a(8*n + 4) = - A123530(n). a(8*n + 5) = 2 * A260942(n). a(8*n + 6) = -2 * A246838(n). a(8*n + 7) = 2 * A260944(n).
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 23 2024
Showing 1-4 of 4 results.