A075840 Primes of the form (2*n)!/(n!)^2+1.
2, 3, 7, 71, 3433, 2704157, 35345263801, 2104098963721, 6892620648693261354601, 410795449442059149332177041, 1520803477811874490019821888415218657, 5949105755928259715106809205795376486501, 1480212998448786189993816895482588794876101
Offset: 1
Keywords
Examples
7 is a term because C(4,2)+1 = 6+1 = 7 is prime.
References
- New Zealand Science Monthly, Bulletin Board, Feb. 1999. Binomial(300,150)+185 = nextprime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..25
Crossrefs
Programs
-
Magma
[a: n in [0..100] | IsPrime(a) where a is Factorial(2*n) div Factorial(n)^2+1]; // Vincenzo Librandi Mar 17 2015
-
Mathematica
a = Select[ Range[100], PrimeQ[Binomial[2#, # ] + 1] & ]; Binomial[2a, a] + 1 Select[Table[(2 n)! / (n!)^2 + 1, {n, 0, 80}], PrimeQ] (* Vincenzo Librandi, Mar 17 2015 *)
-
PARI
v=[]; for(n=0,100,x=bin(2*n,n)+1; if(isprime(x), v=concat(v,x),)); v
Extensions
Edited by Robert G. Wilson v, Oct 15 2002
Definition corrected by Alexander Adamchuk, Nov 30 2007
Edited by N. J. A. Sloane, Nov 30 2007
a(13) from Vincenzo Librandi, Mar 17 2015
Comments