A112879
Define a(0)=3; then a(n)=k*a(n-1)^2-1=least prime first of twin primes.
Original entry on oeis.org
3, 107, 206081, 20894934252011
Offset: 0
12*3^2-1=107, 107 and 109 twin primes so a(1)=107
18*107^2-1=206081, 206081 and 206083 twin primes so a(2)=206081
a(3)=492*(18*(12*3^2-1)^2-1)^2-1
a(4)=702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1
a(5)=2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1
a(6)=2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(7)=130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(8)=980910*(130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(9)=5528418*(980910*(130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(10)=21357012*(5528418*(980910*(130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
A122881
Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 5, 13, 1, 2, 5, 14, 34, 1, 2, 5, 14, 42, 89, 1, 2, 5, 14, 42, 131, 233, 1, 2, 5, 14, 42, 132, 417, 610, 1, 2, 5, 14, 42, 132, 429, 1341, 1597, 1, 2, 5, 14, 42, 132, 429, 1429, 4334, 4181
Offset: 1
For the right border, odd-indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13, ...), making it the right border of the triangle, k1 diagonal.
For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42, ...
First few rows of the triangle are:
1;
1, 2;
1, 2, 5;
1, 2, 5, 13;
1, 2, 5, 14, 34;
1, 2, 5, 14, 42, 89;
1, 2, 5, 14, 42, 131, 233;
1, 2, 5, 14, 42, 132, 417, 610;
...
Showing 1-2 of 2 results.
Comments