cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112879 Define a(0)=3; then a(n)=k*a(n-1)^2-1=least prime first of twin primes.

Original entry on oeis.org

3, 107, 206081, 20894934252011
Offset: 0

Views

Author

Pierre CAMI, Oct 01 2005

Keywords

Comments

k sequence in A112880

Examples

			12*3^2-1=107, 107 and 109 twin primes so a(1)=107
18*107^2-1=206081, 206081 and 206083 twin primes so a(2)=206081
a(3)=492*(18*(12*3^2-1)^2-1)^2-1
a(4)=702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1
a(5)=2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1
a(6)=2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(7)=130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(8)=980910*(130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(9)=5528418*(980910*(130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
a(10)=21357012*(5528418*(980910*(130650*(2370*(2310*(702*(492*(18*(12*3^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1
		

Crossrefs

Cf. A112880.

A122881 Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 2, 5, 13, 1, 2, 5, 14, 34, 1, 2, 5, 14, 42, 89, 1, 2, 5, 14, 42, 131, 233, 1, 2, 5, 14, 42, 132, 417, 610, 1, 2, 5, 14, 42, 132, 429, 1341, 1597, 1, 2, 5, 14, 42, 132, 429, 1429, 4334, 4181
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2006

Keywords

Comments

Convergents of k-th diagonals relate to (2k+3)-polygons; e.g., right border relates to the pentagon (N=5), next border relates to the heptagon (N=7). Convergents of the diagonals are 2 + 2*cos(2*Pi/N) and are roots to Morgan-Voyce polynomials. k2 diagonal = A080937, number of Catalan paths of 2n steps of all values less than or equal to 5. k3 diagonal = A080938, number of Catalan paths of 2n steps of all values less than or equal to 7.

Examples

			For the right border, odd-indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13, ...), making it the right border of the triangle, k1 diagonal.
For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42, ...
First few rows of the triangle are:
  1;
  1, 2;
  1, 2, 5;
  1, 2, 5, 13;
  1, 2, 5, 14, 34;
  1, 2, 5, 14, 42, 89;
  1, 2, 5, 14, 42, 131, 233;
  1, 2, 5, 14, 42, 132, 417, 610;
  ...
		

Crossrefs

Formula

Begin with polygonal matrices of the form (exemplified by the Heptagonal matrix M3: [1, 1, 1; 1, 1, 0; 1, 0, 0]). Let matrix P3 = 1 / M3^2; then for n X n matrices P2, P3, P4...perform P^n * [1, 0, 0] letting this vector = k-th diagonal of the triangle.
Showing 1-2 of 2 results.