cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112884 Number of bits required to represent binomial(2^n, 2^(n-1)).

Original entry on oeis.org

1, 2, 3, 7, 14, 30, 61, 125, 252, 508, 1019, 2043, 4090, 8186, 16377, 32761, 65528, 131064, 262135, 524279, 1048566, 2097142, 4194293, 8388597, 16777204, 33554420, 67108851, 134217715, 268435442, 536870898, 1073741809, 2147483633, 4294967280, 8589934576, 17179869167
Offset: 0

Views

Author

Matt Erbst (matt(AT)erbst.org), Oct 04 2005

Keywords

Examples

			a(2) = 3 because binomial(2^2, 2^1) in binary = 110.
		

Crossrefs

a(n) represents the size of A037293 in binary - see also the central binomial coefficients: A001405.

Programs

  • Mathematica
    Table[IntegerLength[Binomial[2^n,2^(n-1)],2],{n,25}] (* or *)
    CoefficientList[Series[(-2 x^3+3x-2)/((x-1)^2 (2x^2+x-1)), {x,0,25}], x] (* Harvey P. Dale, Apr 06 2011 *)
  • PHP
    $LastFact = gmp_init('1'); for ($i = 2; $i !== 65536; $i *= 2) { $Fact = gmp_fact($i); $Result = gmp_div_q($Fact, gmp_pow($OldFact, 2)); $LastFact = $Fact; echo gmp_strval($Result, 2).'
    '; }

Formula

Appears to be equal to 2^n - floor(n/2) = A000079(n) - A004526(n).
G.f.: (-3*x^3 + 2*x^2 + x - 1)/((x - 1)^2*(2*x^2 + x - 1)). - Conjectured by Harvey P. Dale, Apr 06 2011
a(n) = A070939(A037293(n)). - Alois P. Heinz, Feb 17 2024
The conjectured formula 2^n - floor(n/2) and consequent g.f. are true (see links). - Sela Fried, Oct 03 2024

Extensions

a(0)=1 prepended and g.f. adapted by Alois P. Heinz, Oct 11 2024