cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112927 a(n) is the least prime such that the multiplicative order of 2 mod a(n) equals n, or a(n)=1 if no such prime exists.

Original entry on oeis.org

1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 23, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 47, 241, 601, 2731, 262657, 29, 233, 331, 2147483647, 65537, 599479, 43691, 71, 37, 223, 174763, 79, 61681, 13367, 5419, 431, 397, 631, 2796203, 2351, 97, 4432676798593, 251, 103, 53, 6361, 87211
Offset: 1

Views

Author

Vladimir Shevelev, Aug 25 2008

Keywords

Comments

If a(n) differs from 1, then a(n) is the minimal prime divisor of A064078(n);
a(n)=n+1 iff n+1 is prime from A001122; a(n)=2n+1 iff 2n+1 is prime from A115591.
If a(n) > 1 then a(n) is the index where n occurs first in A014664. - M. F. Hasler, Feb 21 2016
Bang's theorem (special case of Zsigmondy's theorem, see links): a(n)>1 for all n>6. - Jeppe Stig Nielsen, Aug 31 2020

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • PARI
    A112927(n,f=factor(2^n-1)[,1])=!for(i=1,#f,znorder(Mod(2,f[i]))==n&&return(f[i])) \\ Use the optional 2nd arg to give a list of pseudoprimes to try when factoring of 2^n-1 is too slow. You may try factor(2^n-1,0)[,1]. - M. F. Hasler, Feb 21 2016