cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A014664 Order of 2 modulo the n-th prime.

Original entry on oeis.org

2, 4, 3, 10, 12, 8, 18, 11, 28, 5, 36, 20, 14, 23, 52, 58, 60, 66, 35, 9, 39, 82, 11, 48, 100, 51, 106, 36, 28, 7, 130, 68, 138, 148, 15, 52, 162, 83, 172, 178, 180, 95, 96, 196, 99, 210, 37, 226, 76, 29, 119, 24, 50, 16, 131, 268, 135, 92, 70, 94, 292, 102, 155, 156, 316
Offset: 2

Views

Author

Keywords

Comments

In other words, a(n), n >= 2, is the least k such that prime(n) divides 2^k-1.
Concerning the complexity of computing this sequence, see for example Bach and Shallit, p. 115, exercise 8.
Also A002326((p_n-1)/2). Conjecture: If p_n is not a Wieferich prime (1093, 3511, ...) then A002326(((p_n)^k-1)/2) = a(n)*(p_n)^(k-1). - Vladimir Shevelev, May 26 2008
If for distinct i,j,...,k we have a(i)=a(j)=...=a(k) then the number N = p_i*p_j*...*p_k is in A001262 and moreover A137576((N-1)/2) = N. For example, a(16)=a(37)=a(255)=52. Therefore we could take N = p_16*p_37*p_255 = 53*157*1613 = 13421773. - Vladimir Shevelev, Jun 14 2008
Also degree of the irreducible polynomial factors for the polynomial (x^p+1)/(x+1) over GF(2), where p is the n-th prime. - V. Raman, Oct 04 2012
Is this the same as the smallest k > 1 not already in the sequence such that p = prime(n) is a factor of 2^k-1 (A270600)? If the answer is yes, is the sequence a permutation of the positive integers > 1? - Felix Fröhlich, Feb 21 2016. Answer: No, it is easy to prove that 6 is missing and obviously 11 appears twice. - N. J. A. Sloane, Feb 21 2016
pi(A112927(m)) is the index at which a given number m first appears in this sequence. - M. F. Hasler, Feb 21 2016

Examples

			2^2 == 1 (mod 3) and so a(2) = 2;
2^4 == 1 (mod 5) and so a(3) = 4;
2^3 == 1 (mod 7) and so a(4) = 3;
2^10 == 1 (mod 11) and so a(5) = 10; etc.
[Conway & Guy, p. 166]: Referring to the work of Euler, 1/13 in base 2 = 0.000100111011...; (cycle length of 12). - _Gary W. Adamson_, Aug 22 2009
		

References

  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I.
  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966; Table 48, page 98, "Exponents to Which a Belongs, MOD p and MOD p^n.
  • John H. Conway and Richard Guy, "The Book of Numbers", Springer-Verlag, 1996; p. 166: "How does the Cycle Length Change with the Base?". [From Gary W. Adamson, Aug 22 2009]
  • S. K. Sehgal, Group rings, pp. 455-541 in Handbook of Algebra, Vol. 3, Elsevier, 2003; see p. 493.

Crossrefs

Cf. A002326 (order of 2 mod 2n+1), A001122 (full reptend primes in base 2), A065941, A112927.

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);; a:=List([2..Length(P)],n->OrderMod(2,P[n]));; Print(a); # Muniru A Asiru, Jan 29 2019
    
  • Maple
    with(numtheory): [ seq(order(2,ithprime(n)), n=2..60) ];
  • Mathematica
    Reap[Do[p=Prime[i];Do[If[PowerMod[2,k,p]==1,Print[{i,k}];Sow[{i,k}];Goto[ni]],{k,1,10^6}];Label[ni],{i,2,5001}]][[2,1]] (* Zak Seidov, Jan 26 2009 *)
    Table[MultiplicativeOrder[2, Prime[n]], {n, 2, 70}] (* Jean-François Alcover, Dec 10 2015 *)
  • PARI
    a(n)=if(n<0,0,k=1;while((2^k-1)%prime(n)>0,k++);k)
    
  • PARI
    A014664(n)=znorder(Mod(2, prime(n))) \\ Nick Hobson, Jan 08 2007, edited by M. F. Hasler, Feb 21 2016
    
  • PARI
    forprime(p=3, 800, print(factormod((x^p+1)/(x+1), 2, 1)[1, 1])) \\ V. Raman, Oct 04 2012
    
  • Python
    from sympy import n_order, prime
    def A014664(n): return n_order(2,prime(n)) # Chai Wah Wu, Nov 09 2023

Formula

a(n) = (A000040(n)-1)/A001917(n); a(A072190(n)) = A001122(n) - 1. - Benoit Cloitre, Jun 06 2004

Extensions

More terms from Benoit Cloitre, Apr 11 2003

A007138 Smallest primitive factor of 10^n - 1. Also smallest prime p such that 1/p has repeating decimal expansion of period n.

Original entry on oeis.org

3, 11, 37, 101, 41, 7, 239, 73, 333667, 9091, 21649, 9901, 53, 909091, 31, 17, 2071723, 19, 1111111111111111111, 3541, 43, 23, 11111111111111111111111, 99990001, 21401, 859, 757, 29, 3191, 211, 2791, 353, 67, 103, 71, 999999000001, 2028119, 909090909090909091
Offset: 1

Views

Author

Keywords

Comments

In the 18th century, the Japanese mathematician Ajima Naonobu (a.k.a. Ajima Chokuyen) gave the first 16 terms (Smith and Mikami, p. 199). - Jonathan Sondow, May 25 2013
Also the least prime number p such that the multiplicative order of 10 modulo p is n. - Robert G. Wilson v, Dec 09 2013
n always divides p-1. - Jon Perry, Nov 02 2014

Examples

			a(3) = 37 since 1/37 = 0.027027... has period 3, and 37 is the smallest such prime (in fact, the only one).
		

References

  • Ajima Naonobu (aka Ajima Chokuyen), Fujin Isshũ (Periods of Decimal Fractions).
  • J. Brillhart et al., Factorizations of b^n +/- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A046107.
Cf. A001913.
Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    S:= {}:
    for n from 1 to 60 do
      F:= numtheory:-factorset(10^n-1) minus S;
      A[n]:= min(F);
      S:= S union F;
    od:
    seq(A[n],n=1..60); # Robert Israel, Nov 10 2014
  • Mathematica
    s={}; Reap[Scan[(x=Complement[FactorInteger[10^#-1][[All,1]],s]; Sow[Min[x]]; s=Union[s,x])&,Range@60]][[2,1]] (* Shenghui Yang, Apr 15 2025 *)

Extensions

b-file truncated to 364 terms as a(365) was wrong and is currently unknown (pointed by Eric Chen), and a-file revised by Max Alekseyev, Apr 26 2022

A059499 a(n) = |{m : multiplicative order of 2 mod m = n}|.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 16, 1, 5, 5, 8, 1, 24, 1, 38, 9, 11, 3, 68, 6, 5, 4, 54, 7, 79, 1, 16, 11, 5, 13, 462, 3, 5, 13, 140, 3, 123, 7, 110, 54, 11, 7, 664, 2, 114, 29, 118, 7, 124, 59, 188, 13, 55, 3, 4456, 1, 5, 82, 96, 5, 353, 3, 118, 11, 485, 7
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2001

Keywords

Comments

Also, number of primitive factors of 2^n - 1 (cf. A212953). - Max Alekseyev, May 03 2022
The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). See A002326.
a(n) is odd iff n is squarefree, A005117. - Thomas Ordowski, Jan 18 2014
The set S for which a(n) = |S| contains an odd number of prime powers p^k, where k > 0 and p == 3 (mod 4), iff n is squarefree and greater than one. - Isaac Saffold, Dec 28 2019

Examples

			a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3.
		

Crossrefs

Column k=2 of A212957.
Primitive factors of b^n - 1: this sequence (b=2), A059885 (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 31 2012
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} A008683(n/d) * A046801(d) = Sum_{d|A007947(n)} A008683(d) * A046801(n/d). - Max Alekseyev, May 03 2022
a(n) = 1 iff 2^n-1 is noncomposite. a(prime(n)) = 2^A088863(n)-1. - Thomas Ordowski, Jan 16 2014

Extensions

More terms from John W. Layman, Mar 22 2002
More terms from Alois P. Heinz, May 31 2012

A143665 a(n) is the least prime such that the multiplicative order of 5 mod a(n) equals n.

Original entry on oeis.org

2, 3, 31, 13, 11, 7, 19531, 313, 19, 521, 12207031, 601, 305175781, 29, 181, 17, 409, 5167, 191, 41, 379, 23, 8971, 390001, 101, 5227, 109, 234750601, 59, 61, 1861, 2593, 199, 3061, 211, 37, 149, 761, 79, 241, 2238236249, 43, 1644512641, 89, 1171, 47
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 3000000001, a = MultiplicativeOrder[5, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p]; p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

a(23)-a(40) from Robert G. Wilson v, Oct 13 2014
a(41)-a(46) from Robert G. Wilson v, Oct 15 2014

A143663 a(n) is the least prime such that the multiplicative order of 3 mod a(n) equals n, or a(n)=1 if no such prime exists.

Original entry on oeis.org

2, 1, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 73, 797161, 547, 4561, 17, 1871, 19, 1597, 1181, 368089, 67, 47, 6481, 8951, 398581, 109, 29, 59, 31, 683, 21523361, 2413941289, 103, 71, 530713, 13097927, 2851, 313, 42521761, 83, 43, 431, 5501, 181, 23535794707
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Comments

If a(n) differs from 1, then a(n) is the minimal prime divisor of A064079(n).

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    a:= proc(n) local f,p;
    f:= numtheory:-factorset(3^n - 1);
    for  p in f do
       if numtheory:-order(3,p) = n then return p fi
    od:
    1
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Oct 13 2014
  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 100000001, a = MultiplicativeOrder[3, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p; Print[{a, p}]];  p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 11 2013

A112092 a(n) is the least prime such that the multiplicative order of 4 mod a(n) equals n.

Original entry on oeis.org

3, 5, 7, 17, 11, 13, 43, 257, 19, 41, 23, 241, 2731, 29, 151, 65537, 43691, 37, 174763, 61681, 337, 397, 47, 97, 251, 53, 87211, 15790321, 59, 61, 715827883, 641, 67, 137, 71, 433, 223, 229, 79, 4278255361, 83, 1429, 431, 353, 631, 277, 283, 193, 4363953127297
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Comments

a(n) is the minimal prime divisor of A064080(n).

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[4^n - 1][[;; , 1]]}, Do[p = f[[k]]; If[ MultiplicativeOrder[4, p] == n, Break[] ], {k, 1, Length[f]}]; p]; Array[a, 100] (* Amiram Eldar, Jan 27 2019 *)
  • PARI
    a(n) = {my(p = 3); while (znorder(Mod(4, p)) != n, p = nextprime(p+1)); p;} \\ Michel Marcus, Feb 08 2016

Extensions

a(29)-a(30) from Michel Marcus, Feb 08 2016
More term from Amiram Eldar, Jan 27 2019

A252170 Smallest primitive prime factor of 12^n-1.

Original entry on oeis.org

11, 13, 157, 5, 22621, 7, 659, 89, 37, 19141, 23, 20593, 477517, 211, 61, 17, 2693651, 1657, 29043636306420266077, 85403261, 8177824843189, 57154490053, 47, 193, 303551, 79, 306829, 673, 59, 31, 373, 153953, 886381, 2551, 71, 73, 3933841, 3307
Offset: 1

Views

Author

Eric Chen, Dec 15 2014

Keywords

Comments

Also, smallest prime p such that 1/p has duodecimal period n.

Examples

			a(4) = 5 because 1/5 = 0.249724972497... and 5 is the smallest prime with period 4 in base 12.
a(5) = 22621 because 1/22621 = 0.0000100001... and 22621 is the smallest (in fact, the only one) prime with period 5 in base 12.
		

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    S:= {}:
    for n from 1 to 72 do
      F:= numtheory:-factorset(12^n-1) minus S;
      A[n]:= min(F);
      S:= S union F;
    od:
    seq(A[n], n=1..72);
  • Mathematica
    prms={}; Table[f=First/@FactorInteger[12^n-1]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 72}]
  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(12^n-1)[,1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "););} \\ Michel Marcus, Dec 15 2014; after A007138

Extensions

Edited by Max Alekseyev, Aug 26 2021

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015

A379640 Smallest primitive prime factor of 7^n-1.

Original entry on oeis.org

2, 1, 19, 5, 2801, 43, 29, 1201, 37, 11, 1123, 13, 16148168401, 113, 31, 17, 14009, 117307, 419, 281, 11898664849, 23, 47, 73, 2551, 53, 109, 13564461457, 59, 6568801, 311, 353, 3631, 29078814248401, 2127431041, 13841169553, 223, 351121, 486643, 41, 83, 51031
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has septimal period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A074249.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(7^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }

A379641 Smallest primitive prime factor of 8^n-1.

Original entry on oeis.org

7, 3, 73, 5, 31, 19, 127, 17, 262657, 11, 23, 37, 79, 43, 631, 97, 103, 87211, 32377, 41, 92737, 67, 47, 433, 601, 2731, 2593, 29, 233, 18837001, 2147483647, 193, 199, 307, 71, 246241, 223, 571, 937, 61681, 13367, 77158673929, 431, 397, 271, 139, 2351, 577
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has octal period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A274908.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(8^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }
Showing 1-10 of 24 results. Next