A059912
Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n).
Original entry on oeis.org
1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855
Offset: 1
There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.
Triangle T(n,k) begins:
1;
3;
7;
5, 15;
31;
9, 21, 63;
127;
17, 51, 85, 255;
73, 511;
11, 33, 93, 341, 1023;
...
Last elements of rows give:
A000225.
-
with(numtheory):
M:= proc(n) option remember;
divisors(2^n-1) minus U(n-1)
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..20); # Alois P. Heinz, May 31 2012
-
m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-François Alcover, Jun 14 2012, after Alois P. Heinz *)
-
maxDegree=26;for(n=1,maxDegree,forstep(d=1,2^n,2,znorder(Mod(2,d))==n&&print1(d,", "))) \\ inefficient, Jeppe Stig Nielsen, Feb 13 2020
A059913
Triangle T(n,k) of numbers of n degree irreducible polynomials over GF(2) which have order A059912(n,k), k=1..A059499(n).
Original entry on oeis.org
2, 1, 2, 1, 2, 6, 1, 2, 6, 18, 2, 4, 8, 16, 8, 48, 1, 2, 6, 30, 60, 2, 8, 176, 1, 2, 2, 2, 4, 6, 4, 6, 8, 12, 12, 24, 24, 36, 48, 144, 630, 3, 6, 18, 378, 756, 10, 12, 60, 300, 1800, 16, 32, 64, 128, 256, 512, 1024, 2048, 7710, 1, 1, 2, 6, 6, 6, 8, 12, 18, 24
Offset: 1
There are 9 (cf. A001037) irreducible polynomials of degree 6 over GF(2): 1 of order 9, 2 of order 21 and 6 of order 63 (cf. A059912).
Triangle T(n,k) begins:
2;
1;
2;
1, 2;
6;
1, 2, 6;
18;
2, 4, 8, 16;
8, 48;
1, 2, 6, 30, 60;
2, 8, 176;
...
-
Prepend[Table[Map[EulerPhi[#]/n &, Complement[Divisors[2^n - 1],Union[Flatten[Table[Divisors[2^k - 1], {k, 1, n - 1}]]]]], {n, 2,20}], {2}] // Grid (* Geoffrey Critzer, Dec 02 2019 *)
A059892
a(n) = |{m : multiplicative order of 10 mod m is equal to n}|.
Original entry on oeis.org
3, 3, 5, 6, 9, 53, 9, 36, 12, 33, 9, 186, 21, 33, 111, 144, 9, 564, 3, 330, 239, 273, 3, 1756, 84, 165, 76, 714, 93, 16167, 21, 5952, 111, 177, 363, 4288, 21, 15, 99, 5724, 45, 48807, 45, 4314, 1140, 183, 9, 14192, 36, 2940, 495, 1338, 45, 11572, 747, 11484
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(10^d-1), d=divisors(n)):
seq(a(n), n=1..30); # Alois P. Heinz, Oct 12 2012
-
f[n_, d_] := MoebiusMu[n/d]*Length[Divisors[10^d - 1]]; a[n_] := Total[(f[n, #] & ) /@ Divisors[n]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Mar 21 2011 *)
-
j=[]; for(n=1,10,j=concat(j,sumdiv(n,d,moebius(n/d)*numdiv(10^d-1)))); j
-
from sympy import divisors, mobius, divisor_count
def a(n): return sum(mobius(n//d)*divisor_count(10**d - 1) for d in divisors(n)) # Indranil Ghosh, Apr 23 2017
Terms to a(280) in b-file from
T. D. Noe, Oct 01 2013
A212957
A(n,k) is the number of moduli m such that the multiplicative order of k mod m equals n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 2, 0, 2, 5, 4, 6, 1, 0, 4, 2, 3, 4, 4, 3, 0, 2, 6, 2, 12, 6, 10, 1, 0, 4, 4, 8, 4, 9, 16, 2, 4, 0, 3, 6, 2, 26, 4, 37, 6, 14, 2, 0, 4, 3, 12, 18, 4, 10, 3, 8, 4, 5, 0, 2, 12, 5, 14, 6, 42, 2, 28, 26, 16, 3, 0
Offset: 1
A(4,3) = 6: 3^4 = 81 == 1 (mod m) for m in {5,10,16,20,40,80}.
Square array A(n,k) begins:
0, 1, 2, 2, 3, 2, 4, 2, ...
0, 1, 2, 2, 5, 2, 6, 4, ...
0, 1, 2, 4, 3, 2, 8, 2, ...
0, 2, 6, 4, 12, 4, 26, 18, ...
0, 1, 4, 6, 9, 4, 4, 6, ...
0, 3, 10, 16, 37, 10, 42, 24, ...
0, 1, 2, 6, 3, 2, 12, 10, ...
0, 4, 14, 8, 28, 8, 48, 72, ...
-
with(numtheory):
A:= (n, k)-> add(mobius(n/d)*tau(k^d-1), d=divisors(n)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
-
a[n_, k_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, k^d - 1], {d, Divisors[n]}]; a[1, 1] = 0; Table[ a[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
-
a(n, k) = if(k == 1, 0, sumdiv(n, d, moebius(n/d) * numdiv(k^d-1))); \\ Amiram Eldar, Jan 25 2025
A059885
a(n) = |{m : multiplicative order of 3 mod m = n}|.
Original entry on oeis.org
2, 2, 2, 6, 4, 10, 2, 14, 4, 16, 6, 58, 2, 10, 16, 88, 6, 108, 6, 150, 10, 54, 6, 290, 18, 10, 56, 138, 14, 716, 14, 144, 22, 118, 40, 1088, 6, 54, 90, 670, 14, 730, 6, 570, 356, 22, 30, 13864, 124, 342, 54, 138, 14, 3912, 116, 1362, 118, 238, 6, 22058, 6, 110
Offset: 1
a(2) = |{4,8}| = 2, a(4) = |{5,10,16,20,40,80}| = 6, a(6) = |{7,14,28,52,56,91,104,182,364,728}| = 10.
-
with(numtheory); A059885 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*tau(3^d-1); od; RETURN(s); end;
-
a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 3^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 62} ] (* Jean-François Alcover, Dec 12 2012 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(3^d-1)); \\ Amiram Eldar, Jan 25 2025
A059887
a(n) = |{m : multiplicative order of 5 mod m=n}|.
Original entry on oeis.org
3, 5, 3, 12, 9, 37, 3, 28, 18, 47, 3, 180, 3, 53, 81, 176, 9, 446, 21, 564, 39, 117, 9, 884, 180, 53, 360, 244, 21, 5959, 9, 800, 39, 111, 369, 9536, 21, 483, 39, 5476, 9, 18289, 9, 1140, 2958, 111, 3, 9424, 6, 3852, 177, 884, 21, 81048, 561, 1188, 69, 227, 9
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(5^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 5^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2024, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d)*numdiv(5^d-1)); \\ Michel Marcus, Dec 13 2024
A059889
a(n) = |{m : multiplicative order of 7 mod m=n}|.
Original entry on oeis.org
4, 6, 8, 26, 4, 42, 12, 48, 52, 66, 12, 778, 4, 138, 80, 300, 12, 528, 12, 1430, 72, 138, 28, 15216, 24, 66, 1216, 966, 28, 3630, 28, 1344, 360, 58, 108, 16988, 28, 138, 176, 12752, 28, 7398, 12, 4422, 1900, 122, 12, 131028, 240, 536, 744, 1046, 28, 23744, 44
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(7^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 7^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(7^d-1)); \\ Amiram Eldar, Jan 25 2025
A059886
a(n) = |{m : multiplicative order of 4 mod m=n}|.
Original entry on oeis.org
2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1
a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
seq(a(n), n=1..60); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025
A059888
a(n) = |{m : multiplicative order of 6 mod m=n}|.
Original entry on oeis.org
2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 6^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(6^d-1)); \\ Amiram Eldar, Jan 25 2025
A059890
a(n) = |{m : multiplicative order of 8 mod m = n}|.
Original entry on oeis.org
2, 4, 2, 18, 6, 24, 10, 72, 4, 84, 14, 462, 14, 128, 54, 672, 30, 124, 14, 4494, 82, 364, 14, 7608, 120, 172, 56, 9054, 62, 3920, 6, 5376, 238, 1500, 1518, 9600, 62, 364, 494, 69048, 30, 5892, 30, 24174, 956, 364, 62, 253280, 52, 12072, 222, 147246, 254, 12072
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(8^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 8^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(8^d-1)); \\ Amiram Eldar, Jan 25 2025
Showing 1-10 of 21 results.
Comments