A059892
a(n) = |{m : multiplicative order of 10 mod m is equal to n}|.
Original entry on oeis.org
3, 3, 5, 6, 9, 53, 9, 36, 12, 33, 9, 186, 21, 33, 111, 144, 9, 564, 3, 330, 239, 273, 3, 1756, 84, 165, 76, 714, 93, 16167, 21, 5952, 111, 177, 363, 4288, 21, 15, 99, 5724, 45, 48807, 45, 4314, 1140, 183, 9, 14192, 36, 2940, 495, 1338, 45, 11572, 747, 11484
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(10^d-1), d=divisors(n)):
seq(a(n), n=1..30); # Alois P. Heinz, Oct 12 2012
-
f[n_, d_] := MoebiusMu[n/d]*Length[Divisors[10^d - 1]]; a[n_] := Total[(f[n, #] & ) /@ Divisors[n]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Mar 21 2011 *)
-
j=[]; for(n=1,10,j=concat(j,sumdiv(n,d,moebius(n/d)*numdiv(10^d-1)))); j
-
from sympy import divisors, mobius, divisor_count
def a(n): return sum(mobius(n//d)*divisor_count(10**d - 1) for d in divisors(n)) # Indranil Ghosh, Apr 23 2017
Terms to a(280) in b-file from
T. D. Noe, Oct 01 2013
A212957
A(n,k) is the number of moduli m such that the multiplicative order of k mod m equals n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 2, 0, 2, 5, 4, 6, 1, 0, 4, 2, 3, 4, 4, 3, 0, 2, 6, 2, 12, 6, 10, 1, 0, 4, 4, 8, 4, 9, 16, 2, 4, 0, 3, 6, 2, 26, 4, 37, 6, 14, 2, 0, 4, 3, 12, 18, 4, 10, 3, 8, 4, 5, 0, 2, 12, 5, 14, 6, 42, 2, 28, 26, 16, 3, 0
Offset: 1
A(4,3) = 6: 3^4 = 81 == 1 (mod m) for m in {5,10,16,20,40,80}.
Square array A(n,k) begins:
0, 1, 2, 2, 3, 2, 4, 2, ...
0, 1, 2, 2, 5, 2, 6, 4, ...
0, 1, 2, 4, 3, 2, 8, 2, ...
0, 2, 6, 4, 12, 4, 26, 18, ...
0, 1, 4, 6, 9, 4, 4, 6, ...
0, 3, 10, 16, 37, 10, 42, 24, ...
0, 1, 2, 6, 3, 2, 12, 10, ...
0, 4, 14, 8, 28, 8, 48, 72, ...
-
with(numtheory):
A:= (n, k)-> add(mobius(n/d)*tau(k^d-1), d=divisors(n)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
-
a[n_, k_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, k^d - 1], {d, Divisors[n]}]; a[1, 1] = 0; Table[ a[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
-
a(n, k) = if(k == 1, 0, sumdiv(n, d, moebius(n/d) * numdiv(k^d-1))); \\ Amiram Eldar, Jan 25 2025
A059499
a(n) = |{m : multiplicative order of 2 mod m = n}|.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 16, 1, 5, 5, 8, 1, 24, 1, 38, 9, 11, 3, 68, 6, 5, 4, 54, 7, 79, 1, 16, 11, 5, 13, 462, 3, 5, 13, 140, 3, 123, 7, 110, 54, 11, 7, 664, 2, 114, 29, 118, 7, 124, 59, 188, 13, 55, 3, 4456, 1, 5, 82, 96, 5, 353, 3, 118, 11, 485, 7
Offset: 1
a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3.
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, May 31 2012
-
a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* Jean-François Alcover, Dec 12 2012 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ Amiram Eldar, Jan 25 2025
A059885
a(n) = |{m : multiplicative order of 3 mod m = n}|.
Original entry on oeis.org
2, 2, 2, 6, 4, 10, 2, 14, 4, 16, 6, 58, 2, 10, 16, 88, 6, 108, 6, 150, 10, 54, 6, 290, 18, 10, 56, 138, 14, 716, 14, 144, 22, 118, 40, 1088, 6, 54, 90, 670, 14, 730, 6, 570, 356, 22, 30, 13864, 124, 342, 54, 138, 14, 3912, 116, 1362, 118, 238, 6, 22058, 6, 110
Offset: 1
a(2) = |{4,8}| = 2, a(4) = |{5,10,16,20,40,80}| = 6, a(6) = |{7,14,28,52,56,91,104,182,364,728}| = 10.
-
with(numtheory); A059885 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*tau(3^d-1); od; RETURN(s); end;
-
a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 3^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 62} ] (* Jean-François Alcover, Dec 12 2012 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(3^d-1)); \\ Amiram Eldar, Jan 25 2025
A059889
a(n) = |{m : multiplicative order of 7 mod m=n}|.
Original entry on oeis.org
4, 6, 8, 26, 4, 42, 12, 48, 52, 66, 12, 778, 4, 138, 80, 300, 12, 528, 12, 1430, 72, 138, 28, 15216, 24, 66, 1216, 966, 28, 3630, 28, 1344, 360, 58, 108, 16988, 28, 138, 176, 12752, 28, 7398, 12, 4422, 1900, 122, 12, 131028, 240, 536, 744, 1046, 28, 23744, 44
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(7^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 7^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(7^d-1)); \\ Amiram Eldar, Jan 25 2025
A059886
a(n) = |{m : multiplicative order of 4 mod m=n}|.
Original entry on oeis.org
2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1
a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
seq(a(n), n=1..60); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025
A059888
a(n) = |{m : multiplicative order of 6 mod m=n}|.
Original entry on oeis.org
2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 6^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(6^d-1)); \\ Amiram Eldar, Jan 25 2025
A059890
a(n) = |{m : multiplicative order of 8 mod m = n}|.
Original entry on oeis.org
2, 4, 2, 18, 6, 24, 10, 72, 4, 84, 14, 462, 14, 128, 54, 672, 30, 124, 14, 4494, 82, 364, 14, 7608, 120, 172, 56, 9054, 62, 3920, 6, 5376, 238, 1500, 1518, 9600, 62, 364, 494, 69048, 30, 5892, 30, 24174, 956, 364, 62, 253280, 52, 12072, 222, 147246, 254, 12072
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(8^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 8^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(8^d-1)); \\ Amiram Eldar, Jan 25 2025
A059891
a(n) = |{m : multiplicative order of 9 mod m = n}|.
Original entry on oeis.org
4, 6, 12, 14, 20, 58, 12, 88, 112, 150, 60, 290, 12, 138, 732, 144, 124, 1088, 60, 670, 740, 570, 28, 13864, 360, 138, 3968, 1362, 252, 22058, 124, 320, 1972, 1146, 732, 10704, 124, 570, 12260, 15176, 124, 60470, 28, 11634, 195728, 282, 508, 116592, 2032
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(9^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 9^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(9^d-1)); \\ Amiram Eldar, Jan 25 2025
A366613
Sum of the divisors of 5^n-1.
Original entry on oeis.org
7, 60, 224, 1736, 6048, 49920, 136724, 1107792, 3718400, 27060480, 85449224, 869499904, 2136230474, 15820920000, 61359427584, 461863805760, 1338408456700, 13177159680000, 33558717136896, 301282248701952, 863701914880000, 6313641012910080, 20863951122979048
Offset: 1
a(3)=224 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
-
a:=n->numtheory[sigma](5^n-1):
seq(a(n), n=1..100);
-
DivisorSigma[1, 5^Range[30]-1]
Showing 1-10 of 15 results.
Comments