cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A059892 a(n) = |{m : multiplicative order of 10 mod m is equal to n}|.

Original entry on oeis.org

3, 3, 5, 6, 9, 53, 9, 36, 12, 33, 9, 186, 21, 33, 111, 144, 9, 564, 3, 330, 239, 273, 3, 1756, 84, 165, 76, 714, 93, 16167, 21, 5952, 111, 177, 363, 4288, 21, 15, 99, 5724, 45, 48807, 45, 4314, 1140, 183, 9, 14192, 36, 2940, 495, 1338, 45, 11572, 747, 11484
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
The number of unit fractions 1/k having a decimal expansion of period n and with k coprime to 10. - T. D. Noe, May 18 2007
Also, number of primitive factors of 10^n - 1 (cf. A003060). - Max Alekseyev, May 03 2022
a(n) is odd if and only if n is squarefree. Proof: Note that 10^d - 1 == 3 (mod 4) for d >= 2, so 10^d - 1 is a square if and only if d = 1. From the formula we can see that a(n) is odd if and only if mu(n) is nonzero, or n is squarefree. - Jianing Song, Jun 15 2021

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), this sequence (b=10).
Column k=10 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(10^d-1), d=divisors(n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    f[n_, d_] := MoebiusMu[n/d]*Length[Divisors[10^d - 1]]; a[n_] := Total[(f[n, #] & ) /@ Divisors[n]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Mar 21 2011 *)
  • PARI
    j=[]; for(n=1,10,j=concat(j,sumdiv(n,d,moebius(n/d)*numdiv(10^d-1)))); j
    
  • Python
    from sympy import divisors, mobius, divisor_count
    def a(n): return sum(mobius(n//d)*divisor_count(10**d - 1) for d in divisors(n)) # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(10^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

Extensions

More terms from Jason Earls, Aug 06 2001.
Terms to a(280) in b-file from T. D. Noe, Oct 01 2013
a(281)-a(322) in b-file from Ray Chandler, May 03 2017
a(323)-a(352) in b-file from Max Alekseyev, May 03 2022

A212957 A(n,k) is the number of moduli m such that the multiplicative order of k mod m equals n; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 2, 0, 2, 5, 4, 6, 1, 0, 4, 2, 3, 4, 4, 3, 0, 2, 6, 2, 12, 6, 10, 1, 0, 4, 4, 8, 4, 9, 16, 2, 4, 0, 3, 6, 2, 26, 4, 37, 6, 14, 2, 0, 4, 3, 12, 18, 4, 10, 3, 8, 4, 5, 0, 2, 12, 5, 14, 6, 42, 2, 28, 26, 16, 3, 0
Offset: 1

Views

Author

Alois P. Heinz, Jun 01 2012

Keywords

Examples

			A(4,3) = 6: 3^4 = 81 == 1 (mod m) for m in {5,10,16,20,40,80}.
Square array A(n,k) begins:
  0,  1,  2,  2,  3,  2,  4,  2, ...
  0,  1,  2,  2,  5,  2,  6,  4, ...
  0,  1,  2,  4,  3,  2,  8,  2, ...
  0,  2,  6,  4, 12,  4, 26, 18, ...
  0,  1,  4,  6,  9,  4,  4,  6, ...
  0,  3, 10, 16, 37, 10, 42, 24, ...
  0,  1,  2,  6,  3,  2, 12, 10, ...
  0,  4, 14,  8, 28,  8, 48, 72, ...
		

Crossrefs

Main diagonal gives A252760.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> add(mobius(n/d)*tau(k^d-1), d=divisors(n)):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
  • Mathematica
    a[n_, k_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, k^d - 1], {d, Divisors[n]}]; a[1, 1] = 0; Table[ a[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n, k) = if(k == 1, 0, sumdiv(n, d, moebius(n/d) * numdiv(k^d-1))); \\ Amiram Eldar, Jan 25 2025

Formula

A(n,k) = |{m : multiplicative order of k mod m = n}|.
A(n,k) = Sum_{d|n} mu(n/d)*tau(k^d-1), mu = A008683, tau = A000005.

A059499 a(n) = |{m : multiplicative order of 2 mod m = n}|.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 16, 1, 5, 5, 8, 1, 24, 1, 38, 9, 11, 3, 68, 6, 5, 4, 54, 7, 79, 1, 16, 11, 5, 13, 462, 3, 5, 13, 140, 3, 123, 7, 110, 54, 11, 7, 664, 2, 114, 29, 118, 7, 124, 59, 188, 13, 55, 3, 4456, 1, 5, 82, 96, 5, 353, 3, 118, 11, 485, 7
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2001

Keywords

Comments

Also, number of primitive factors of 2^n - 1 (cf. A212953). - Max Alekseyev, May 03 2022
The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). See A002326.
a(n) is odd iff n is squarefree, A005117. - Thomas Ordowski, Jan 18 2014
The set S for which a(n) = |S| contains an odd number of prime powers p^k, where k > 0 and p == 3 (mod 4), iff n is squarefree and greater than one. - Isaac Saffold, Dec 28 2019

Examples

			a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3.
		

Crossrefs

Column k=2 of A212957.
Primitive factors of b^n - 1: this sequence (b=2), A059885 (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 31 2012
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} A008683(n/d) * A046801(d) = Sum_{d|A007947(n)} A008683(d) * A046801(n/d). - Max Alekseyev, May 03 2022
a(n) = 1 iff 2^n-1 is noncomposite. a(prime(n)) = 2^A088863(n)-1. - Thomas Ordowski, Jan 16 2014

Extensions

More terms from John W. Layman, Mar 22 2002
More terms from Alois P. Heinz, May 31 2012

A059885 a(n) = |{m : multiplicative order of 3 mod m = n}|.

Original entry on oeis.org

2, 2, 2, 6, 4, 10, 2, 14, 4, 16, 6, 58, 2, 10, 16, 88, 6, 108, 6, 150, 10, 54, 6, 290, 18, 10, 56, 138, 14, 716, 14, 144, 22, 118, 40, 1088, 6, 54, 90, 670, 14, 730, 6, 570, 356, 22, 30, 13864, 124, 342, 54, 138, 14, 3912, 116, 1362, 118, 238, 6, 22058, 6, 110
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). a(n) = number of orders of degree-n monic irreducible polynomials over GF(3).
Also, number of primitive factors of 3^n - 1 (cf. A218356). - Max Alekseyev, May 03 2022

Examples

			a(2) = |{4,8}| = 2, a(4) = |{5,10,16,20,40,80}| = 6, a(6) = |{7,14,28,52,56,91,104,182,364,728}| = 10.
		

Crossrefs

Primitive factors of b^n - 1: A059499 (b=2), this sequence (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=3 of A212957.

Programs

  • Maple
    with(numtheory); A059885 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*tau(3^d-1); od; RETURN(s); end;
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 3^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 62} ] (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(3^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(3^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A059887 a(n) = |{m : multiplicative order of 5 mod m=n}|.

Original entry on oeis.org

3, 5, 3, 12, 9, 37, 3, 28, 18, 47, 3, 180, 3, 53, 81, 176, 9, 446, 21, 564, 39, 117, 9, 884, 180, 53, 360, 244, 21, 5959, 9, 800, 39, 111, 369, 9536, 21, 483, 39, 5476, 9, 18289, 9, 1140, 2958, 111, 3, 9424, 6, 3852, 177, 884, 21, 81048, 561, 1188, 69, 227, 9
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). a(n) = number of orders of degree-n monic irreducible polynomials over GF(5).
Also, number of primitive factors of 5^n - 1 (cf. A218357). - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), this sequence (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=5 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(5^d-1), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 5^d-1], {d, Divisors[n]}];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2024, after Alois P. Heinz *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*numdiv(5^d-1)); \\ Michel Marcus, Dec 13 2024

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(5^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A059889 a(n) = |{m : multiplicative order of 7 mod m=n}|.

Original entry on oeis.org

4, 6, 8, 26, 4, 42, 12, 48, 52, 66, 12, 778, 4, 138, 80, 300, 12, 528, 12, 1430, 72, 138, 28, 15216, 24, 66, 1216, 966, 28, 3630, 28, 1344, 360, 58, 108, 16988, 28, 138, 176, 12752, 28, 7398, 12, 4422, 1900, 122, 12, 131028, 240, 536, 744, 1046, 28, 23744, 44
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) = number of orders of degree n monic irreducible polynomials over GF(7).
Also, number of primitive factors of 7^n - 1 (cf. A218358). - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), this sequence (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=7 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(7^d-1), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 7^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(7^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(7^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A059886 a(n) = |{m : multiplicative order of 4 mod m=n}|.

Original entry on oeis.org

2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) is the number of orders of degree-n monic irreducible polynomials over GF(4).
Also, number of primitive factors of 4^n - 1. - Max Alekseyev, May 03 2022

Examples

			a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
		

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), this sequence (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=4 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(4^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A059888 a(n) = |{m : multiplicative order of 6 mod m=n}|.

Original entry on oeis.org

2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
Also, number of primitive factors of 6^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), this sequence (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=6 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 6^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(6^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(6^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A059890 a(n) = |{m : multiplicative order of 8 mod m = n}|.

Original entry on oeis.org

2, 4, 2, 18, 6, 24, 10, 72, 4, 84, 14, 462, 14, 128, 54, 672, 30, 124, 14, 4494, 82, 364, 14, 7608, 120, 172, 56, 9054, 62, 3920, 6, 5376, 238, 1500, 1518, 9600, 62, 364, 494, 69048, 30, 5892, 30, 24174, 956, 364, 62, 253280, 52, 12072, 222, 147246, 254, 12072
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). a(n) = number of orders of degree-n monic irreducible polynomials over GF(8).
Also, number of primitive factors of 8^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), this sequence (b=8), A059891 (b=9), A059892 (b=10).
Column k=8 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(8^d-1), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 8^d-1], {d, Divisors[n]}];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(8^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(8^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A085034 Number of prime factors of cyclotomic(n,9), which is A019327(n), the value of the n-th cyclotomic polynomial evaluated at x=9.

Original entry on oeis.org

3, 2, 2, 2, 3, 1, 2, 3, 3, 2, 4, 1, 2, 2, 3, 2, 5, 1, 4, 1, 4, 2, 3, 3, 4, 2, 5, 2, 6, 1, 5, 2, 3, 2, 3, 1, 5, 2, 8, 2, 5, 2, 3, 3, 5, 2, 7, 2, 7, 4, 5, 2, 5, 1, 5, 3, 6, 2, 4, 3, 4, 3, 5, 2, 4, 1, 5, 3, 7, 3, 6, 2, 6, 3, 7, 4, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057952, number of prime factors of 9^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), this sequence (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 9]]][[2]], {n, 1, 100}]
Showing 1-10 of 10 results.