A059892
a(n) = |{m : multiplicative order of 10 mod m is equal to n}|.
Original entry on oeis.org
3, 3, 5, 6, 9, 53, 9, 36, 12, 33, 9, 186, 21, 33, 111, 144, 9, 564, 3, 330, 239, 273, 3, 1756, 84, 165, 76, 714, 93, 16167, 21, 5952, 111, 177, 363, 4288, 21, 15, 99, 5724, 45, 48807, 45, 4314, 1140, 183, 9, 14192, 36, 2940, 495, 1338, 45, 11572, 747, 11484
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(10^d-1), d=divisors(n)):
seq(a(n), n=1..30); # Alois P. Heinz, Oct 12 2012
-
f[n_, d_] := MoebiusMu[n/d]*Length[Divisors[10^d - 1]]; a[n_] := Total[(f[n, #] & ) /@ Divisors[n]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Mar 21 2011 *)
-
j=[]; for(n=1,10,j=concat(j,sumdiv(n,d,moebius(n/d)*numdiv(10^d-1)))); j
-
from sympy import divisors, mobius, divisor_count
def a(n): return sum(mobius(n//d)*divisor_count(10**d - 1) for d in divisors(n)) # Indranil Ghosh, Apr 23 2017
Terms to a(280) in b-file from
T. D. Noe, Oct 01 2013
A212957
A(n,k) is the number of moduli m such that the multiplicative order of k mod m equals n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 2, 0, 2, 5, 4, 6, 1, 0, 4, 2, 3, 4, 4, 3, 0, 2, 6, 2, 12, 6, 10, 1, 0, 4, 4, 8, 4, 9, 16, 2, 4, 0, 3, 6, 2, 26, 4, 37, 6, 14, 2, 0, 4, 3, 12, 18, 4, 10, 3, 8, 4, 5, 0, 2, 12, 5, 14, 6, 42, 2, 28, 26, 16, 3, 0
Offset: 1
A(4,3) = 6: 3^4 = 81 == 1 (mod m) for m in {5,10,16,20,40,80}.
Square array A(n,k) begins:
0, 1, 2, 2, 3, 2, 4, 2, ...
0, 1, 2, 2, 5, 2, 6, 4, ...
0, 1, 2, 4, 3, 2, 8, 2, ...
0, 2, 6, 4, 12, 4, 26, 18, ...
0, 1, 4, 6, 9, 4, 4, 6, ...
0, 3, 10, 16, 37, 10, 42, 24, ...
0, 1, 2, 6, 3, 2, 12, 10, ...
0, 4, 14, 8, 28, 8, 48, 72, ...
-
with(numtheory):
A:= (n, k)-> add(mobius(n/d)*tau(k^d-1), d=divisors(n)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
-
a[n_, k_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, k^d - 1], {d, Divisors[n]}]; a[1, 1] = 0; Table[ a[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
-
a(n, k) = if(k == 1, 0, sumdiv(n, d, moebius(n/d) * numdiv(k^d-1))); \\ Amiram Eldar, Jan 25 2025
A059499
a(n) = |{m : multiplicative order of 2 mod m = n}|.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 16, 1, 5, 5, 8, 1, 24, 1, 38, 9, 11, 3, 68, 6, 5, 4, 54, 7, 79, 1, 16, 11, 5, 13, 462, 3, 5, 13, 140, 3, 123, 7, 110, 54, 11, 7, 664, 2, 114, 29, 118, 7, 124, 59, 188, 13, 55, 3, 4456, 1, 5, 82, 96, 5, 353, 3, 118, 11, 485, 7
Offset: 1
a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3.
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, May 31 2012
-
a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* Jean-François Alcover, Dec 12 2012 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ Amiram Eldar, Jan 25 2025
A059885
a(n) = |{m : multiplicative order of 3 mod m = n}|.
Original entry on oeis.org
2, 2, 2, 6, 4, 10, 2, 14, 4, 16, 6, 58, 2, 10, 16, 88, 6, 108, 6, 150, 10, 54, 6, 290, 18, 10, 56, 138, 14, 716, 14, 144, 22, 118, 40, 1088, 6, 54, 90, 670, 14, 730, 6, 570, 356, 22, 30, 13864, 124, 342, 54, 138, 14, 3912, 116, 1362, 118, 238, 6, 22058, 6, 110
Offset: 1
a(2) = |{4,8}| = 2, a(4) = |{5,10,16,20,40,80}| = 6, a(6) = |{7,14,28,52,56,91,104,182,364,728}| = 10.
-
with(numtheory); A059885 := proc(n) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*tau(3^d-1); od; RETURN(s); end;
-
a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 3^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 62} ] (* Jean-François Alcover, Dec 12 2012 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(3^d-1)); \\ Amiram Eldar, Jan 25 2025
A059887
a(n) = |{m : multiplicative order of 5 mod m=n}|.
Original entry on oeis.org
3, 5, 3, 12, 9, 37, 3, 28, 18, 47, 3, 180, 3, 53, 81, 176, 9, 446, 21, 564, 39, 117, 9, 884, 180, 53, 360, 244, 21, 5959, 9, 800, 39, 111, 369, 9536, 21, 483, 39, 5476, 9, 18289, 9, 1140, 2958, 111, 3, 9424, 6, 3852, 177, 884, 21, 81048, 561, 1188, 69, 227, 9
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(5^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 5^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2024, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d)*numdiv(5^d-1)); \\ Michel Marcus, Dec 13 2024
A059889
a(n) = |{m : multiplicative order of 7 mod m=n}|.
Original entry on oeis.org
4, 6, 8, 26, 4, 42, 12, 48, 52, 66, 12, 778, 4, 138, 80, 300, 12, 528, 12, 1430, 72, 138, 28, 15216, 24, 66, 1216, 966, 28, 3630, 28, 1344, 360, 58, 108, 16988, 28, 138, 176, 12752, 28, 7398, 12, 4422, 1900, 122, 12, 131028, 240, 536, 744, 1046, 28, 23744, 44
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(7^d-1), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 7^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(7^d-1)); \\ Amiram Eldar, Jan 25 2025
A059886
a(n) = |{m : multiplicative order of 4 mod m=n}|.
Original entry on oeis.org
2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1
a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
seq(a(n), n=1..60); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025
A059888
a(n) = |{m : multiplicative order of 6 mod m=n}|.
Original entry on oeis.org
2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 6^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
-
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(6^d-1)); \\ Amiram Eldar, Jan 25 2025
A366654
a(n) = phi(8^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
6, 36, 432, 1728, 27000, 139968, 1778112, 6635520, 113467392, 534600000, 6963536448, 26121388032, 465193834560, 2427720325632, 28548223200000, 109586090557440, 1910296842179040, 9618417501143040, 123523151337020736, 406467072000000000, 7713001620195508224
Offset: 1
phi(k^n-1):
A053287 (k=2),
A295500 (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7), this sequence (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
-
EulerPhi[8^Range[30] - 1]
-
{a(n) = eulerphi(8^n-1)}
-
from sympy import totient
def A366654(n): return totient((1<<3*n)-1) # Chai Wah Wu, Oct 15 2023
A366653
Sum of the divisors of 8^n-1.
Original entry on oeis.org
8, 104, 592, 8736, 38912, 473600, 2466048, 38054016, 155493536, 2015330304, 10359014400, 166290432000, 636328345600, 7645340651520, 42424026529792, 648494317126656, 2599936977797120, 32817383473149440, 164708609085669376, 3010983668199456768
Offset: 1
a(5)=38912 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
-
a:=n->numtheory[sigma](8^n-1):
seq(a(n), n=1..100);
-
DivisorSigma[1, 8^Range[30]-1]
-
[sigma(8**n-1, 1) for n in range(1, 21)] # Stefano Spezia, Aug 02 2025
Showing 1-10 of 13 results.
Comments