cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A295501 a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 36, 128, 600, 1728, 10584, 32768, 139968, 480000, 2640704, 6635520, 44717400, 132765696, 534600000, 2147483648, 11452896600, 26121388032, 183250539864, 473702400000, 2427720325632, 8834232287232, 45914084232320, 109586090557440, 656100000000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), this sequence (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[4^Range[30] - 1] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(4^n-1)}

Formula

a(n) = n*A027695(n).
a(n) = A053287(2*n) = A053285(n) * A053287(n). - Max Alekseyev, Jan 07 2024

A366623 a(n) = phi(6^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 24, 168, 864, 6200, 30240, 223944, 1119744, 7457184, 37200000, 277618528, 1254113280, 10445497920, 51618196224, 365601600000, 1770091315200, 13439285266176, 62336092492800, 484935499902880, 2179146240000000, 17141125020596640, 86330728271779200
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), this sequence (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[6^Range[22] - 1] (* Paul F. Marrero Romero, Oct 23 2023 *)
  • PARI
    {a(n) = eulerphi(6^n-1)}

Formula

a(n) = A000010(A024062(n)). - Paul F. Marrero Romero, Oct 23 2023

A366685 a(n) = phi(11^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 432, 3840, 64400, 373248, 7613424, 56217600, 765889344, 6913984000, 114117380608, 599824465920, 13796450740800, 98909341090560, 1356399209088000, 11341872916070400, 202178811399717504, 1171410130065973248, 24463636179365818512, 176391086415667200000
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), this sequence (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[11^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(11^n-1)}

A295502 a(n) = phi(5^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 60, 192, 1400, 4320, 39060, 119808, 894240, 2912000, 24414060, 62208000, 610351560, 1959874560, 13154400000, 44043337728, 380537036928, 997843069440, 9485297382000, 25606963200000, 230106651919200, 748687423334400, 5959800062798400, 15138938880000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Comments

Faye et al. prove that no term is of the form 5^k-1. - Michel Marcus, Jun 16 2024

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), this sequence (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[5^Range[25] - 1] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(5^n-1)}

Formula

a(n) = n*A027741(n).
a(n) = A000010(A024049(n)). - Michel Marcus, Jun 16 2024

A366635 a(n) = phi(7^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 16, 108, 640, 5600, 36288, 264992, 1536000, 12387168, 85120000, 658519752, 3135283200, 32296336800, 216063877120, 1450340640000, 8333819904000, 77537969371008, 488237947481088, 3790563394976072, 19162214400000000, 170264753751665664, 1245495178700551680
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), this sequence (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[7^Range[30] - 1] (* Wesley Ivan Hurt, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(7^n-1)}

A366663 a(n) = phi(9^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 288, 2560, 26400, 165888, 2384928, 15728640, 141087744, 1246080000, 14758128000, 85996339200, 1270928131200, 8810420097024, 70207948800000, 677066362060800, 8218041445152000, 43129128265187328, 674757689572915200, 4238841176064000000
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), this sequence (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[9^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(9^n-1)}

Formula

a(n) = A295500(2*n) = 2 * A295500(n) * A366579(n). - Max Alekseyev, Jan 07 2024

A295500 a(n) = phi(3^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 12, 32, 110, 288, 1092, 2560, 9072, 26400, 84700, 165888, 797160, 2384928, 6019200, 15728640, 64533700, 141087744, 580765248, 1246080000, 4823425152, 14758128000, 46070066188, 85996339200, 385087175000, 1270928131200, 3474144608256, 8810420097024
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), this sequence (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[3^Range[30] - 1] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(3^n-1)}

Formula

a(n) = n*A027385(n).
a(n) = A000010(A024023(n)). - Michel Marcus, Jun 18 2024

A366711 a(n) = phi(12^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

10, 120, 1560, 13440, 226200, 2021760, 32518360, 274391040, 4534807680, 51953616000, 646094232960, 4662793175040, 97266341877120, 1070382142166400, 13666309113600000, 109897747141754880, 2016918439151095000, 17518491733377024000, 290436363064202660760
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), this sequence (k=12).

Programs

  • Mathematica
    EulerPhi[12^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(12^n-1)}

A295503 a(n) = phi(10^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 60, 648, 6000, 64800, 466560, 6637344, 58752000, 648646704, 5890320000, 66663457344, 461894400000, 6458084523072, 60339430569600, 610154104320000, 5529599115264000, 66666634474902192, 441994921381739520, 6666666666666666660, 58301444908800000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), this sequence (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    Array[ EulerPhi[10^# - 1] &, 20] (* Robert G. Wilson v, Nov 22 2017 *)
  • PARI
    {a(n) = eulerphi(10^n-1)}

Formula

a(n) = n*A295497(n).
a(n) = A000010(A002283(n)). - Michel Marcus, Nov 25 2017

A366653 Sum of the divisors of 8^n-1.

Original entry on oeis.org

8, 104, 592, 8736, 38912, 473600, 2466048, 38054016, 155493536, 2015330304, 10359014400, 166290432000, 636328345600, 7645340651520, 42424026529792, 648494317126656, 2599936977797120, 32817383473149440, 164708609085669376, 3010983668199456768
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(5)=38912 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](8^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 8^Range[30]-1]
  • SageMath
    [sigma(8**n-1, 1) for n in range(1, 21)] # Stefano Spezia, Aug 02 2025

Formula

a(n) = sigma(8^n-1) = A000203(A024088(n)).
a(n) = A075708(3*n). - Max Alekseyev, Jan 09 2024
Showing 1-10 of 13 results. Next