cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Length of row n of A001265.

Examples

			a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
        1: {}
        3: {2}
        7: {4}
       15: {2,3}
       31: {11}
       63: {2,2,4}
      127: {31}
      255: {2,3,7}
      511: {4,21}
     1023: {2,5,11}
     2047: {9,24}
     4095: {2,2,3,4,6}
     8191: {1028}
    16383: {2,14,31}
    32767: {4,11,36}
    65535: {2,3,7,55}
   131071: {12251}
   262143: {2,2,2,4,8,21}
   524287: {43390}
  1048575: {2,3,3,5,11,13}
(End)
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
    a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

Formula

Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

A085035 Number of prime factors of cyclotomic(n,10), which is A019328(n), the value of the n-th cyclotomic polynomial evaluated at x=10.

Original entry on oeis.org

2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 1, 3, 2, 3, 3, 5, 3, 3, 5, 2, 3, 3, 1, 3, 1, 1, 2, 4, 4, 4, 3, 2, 4, 2, 1, 2, 3, 4, 2, 4, 2, 4, 2, 3, 2, 2, 3, 7, 1, 5, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 4, 5, 6, 2, 6, 2, 3, 2, 3, 3, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057951, number of prime factors of 10^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), this sequence (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 10]]][[2]], {n, 1, 100}]

Formula

a(n) = A001222(A019328(n)). - Ray Chandler, May 10 2017

A085028 Number of prime factors of cyclotomic(n,3), which is A019321(n), the value of the n-th cyclotomic polynomial evaluated at x=3.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 4, 1, 3, 3, 2, 2, 3, 1, 4, 3, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 3, 4, 3, 2, 3, 2, 4, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057958, number of prime factors of 3^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), this sequence (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 3]]][[2]], {n, 1, 100}]

A085029 Number of prime factors of cyclotomic(n,4), which is A019322(n), the value of the n-th cyclotomic polynomial evaluated at x=4.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 4, 3, 3, 1, 5, 2, 2, 2, 3, 3, 4, 2, 4, 3, 3, 1, 4, 2, 4, 2, 3, 4, 5, 2, 2, 4, 6, 2, 5, 2, 6, 2, 4, 2, 5, 1, 2, 4, 3, 2, 4, 2, 4, 3, 3, 2, 5, 2, 5, 4, 3, 3, 4, 5, 4, 2, 7, 4, 7, 2, 2, 4, 3, 3, 4, 3, 6, 1, 3, 3, 5, 1, 6, 3, 5, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057957, number of prime factors of 4^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), this sequence (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 4]]][[2]], {n, 1, 100}]

A085031 Number of prime factors of cyclotomic(n,6), which is A019324(n), the value of the n-th cyclotomic polynomial evaluated at x=6.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 2, 1, 1, 4, 1, 3, 3, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 1, 4, 3, 3, 2, 3, 2, 3, 1, 3, 3, 3, 2, 2, 4, 3, 3, 3, 4, 3, 1, 4, 3, 4, 3, 2, 2, 2, 5, 1, 3, 4, 3, 3, 2, 2, 4, 3, 3, 2, 3, 7, 2, 3, 1, 4, 2, 3, 1, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057955, number of prime factors of 6^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), this sequence (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 6]]][[2]], {n, 1, 100}]

A085032 Number of prime factors of cyclotomic(n,7), which is A019325(n), the value of the n-th cyclotomic polynomial evaluated at x=7.

Original entry on oeis.org

2, 3, 2, 3, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 1, 2, 3, 3, 2, 2, 5, 1, 3, 1, 3, 3, 3, 1, 2, 1, 3, 2, 3, 2, 3, 2, 2, 3, 2, 1, 2, 1, 4, 1, 4, 2, 3, 1, 1, 4, 4, 1, 4, 2, 4, 3, 1, 4, 5, 2, 4, 3, 3, 4, 2, 3, 5, 2, 2, 1, 3, 3, 2, 3, 5, 4, 7, 1
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057954, number of prime factors of 7^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), this sequence (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 7]]][[2]], {n, 1, 100}]

A086251 Number of primitive prime factors of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A prime factor of 2^n - 1 is called primitive if it does not divide 2^r - 1 for any r < n. Equivalently, p is a primitive prime factor of 2^n - 1 if ord(2,p) = n. Zsigmondy's theorem says that there is at least one primitive prime factor for n > 1, except for n=6. See A086252 for those n that have a record number of primitive prime factors.
Number of odd primes p such that A002326((p-1)/2) = n. Number of occurrences of number n in A014664. - Thomas Ordowski, Sep 12 2017
The prime factors are not counted with multiplicity, which matters for a(364)=4 and a(1755)=6. - Jeppe Stig Nielsen, Sep 01 2020

Examples

			a(11) = 2 because 2^11 - 1 = 23*89 and both 23 and 89 have order 11.
		

Crossrefs

Cf. A046800, A046051 (number of prime factors, with repetition, of 2^n-1), A086252, A002588, A005420, A002184, A046801, A049093, A049094, A059499, A085021, A097406, A112927, A237043.

Programs

  • Mathematica
    Join[{0}, Table[cnt=0; f=Transpose[FactorInteger[2^n-1]][[1]]; Do[If[MultiplicativeOrder[2, f[[i]]]==n, cnt++ ], {i, Length[f]}]; cnt, {n, 2, 200}]]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*omega(2^d-1)); \\ Michel Marcus, Sep 12 2017
    
  • PARI
    a(n) = my(m=polcyclo(n, 2)); omega(m/gcd(m,n)) \\ Jeppe Stig Nielsen, Sep 01 2020

Formula

a(n) = Sum{d|n} mu(n/d) A046800(d), inverse Mobius transform of A046800.
a(n) <= A182590(n). - Thomas Ordowski, Sep 14 2017
a(n) = A001221(A064078(n)). - Thomas Ordowski, Oct 26 2017

Extensions

Terms to a(500) in b-file from T. D. Noe, Nov 11 2010
Terms a(501)-a(1200) in b-file from Charles R Greathouse IV, Sep 14 2017
Terms a(1201)-a(1206) in b-file from Max Alekseyev, Sep 11 2022

A085030 Number of prime factors of cyclotomic(n,5), which is A019323(n), the value of the n-th cyclotomic polynomial evaluated at x=5.

Original entry on oeis.org

2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 4, 1, 3, 2, 2, 3, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 1, 1, 1, 2, 3, 3, 3, 4, 5, 1, 1, 2, 2, 2, 3, 3, 3, 4, 3, 2, 5, 4, 4, 2, 2, 3, 3, 3, 5, 2, 3, 2, 3, 2, 2, 4, 3, 2, 3, 4, 3, 1, 6, 1, 2, 1, 4, 3, 4, 2, 3, 3, 4, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057956, number of prime factors of 5^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), this sequence (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 5]]][[2]], {n, 1, 100}]

A085033 Number of prime factors of cyclotomic(n,8), which is A019326(n), the value of the n-th cyclotomic polynomial evaluated at x=8.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 4, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 4, 5, 1, 2, 3, 3, 4, 5, 2, 5, 3, 4, 2, 4, 1, 4, 4, 3, 3, 5, 2, 3, 3, 2, 8, 7, 4, 4, 3, 2, 3, 5, 3, 4, 3, 2, 3, 2, 2, 5, 7, 4, 5, 6, 2, 6, 5, 4, 6, 3, 1, 7, 3, 4, 5, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057953, number of prime factors of 8^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), this sequence (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 8]]][[2]], {n, 1, 100}]

A085034 Number of prime factors of cyclotomic(n,9), which is A019327(n), the value of the n-th cyclotomic polynomial evaluated at x=9.

Original entry on oeis.org

3, 2, 2, 2, 3, 1, 2, 3, 3, 2, 4, 1, 2, 2, 3, 2, 5, 1, 4, 1, 4, 2, 3, 3, 4, 2, 5, 2, 6, 1, 5, 2, 3, 2, 3, 1, 5, 2, 8, 2, 5, 2, 3, 3, 5, 2, 7, 2, 7, 4, 5, 2, 5, 1, 5, 3, 6, 2, 4, 3, 4, 3, 5, 2, 4, 1, 5, 3, 7, 3, 6, 2, 6, 3, 7, 4, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057952, number of prime factors of 9^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), this sequence (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 9]]][[2]], {n, 1, 100}]
Showing 1-10 of 11 results. Next