cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A057954 Number of prime factors of 7^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 5, 4, 8, 3, 8, 4, 10, 7, 8, 4, 13, 3, 9, 7, 13, 4, 12, 4, 14, 7, 9, 5, 18, 5, 8, 12, 13, 5, 14, 5, 16, 9, 8, 7, 18, 5, 9, 8, 18, 5, 15, 4, 15, 12, 9, 4, 22, 8, 11, 10, 13, 5, 18, 6, 19, 10, 9, 6, 24, 6, 11, 11, 20, 9, 17, 6, 14, 10, 18, 4, 26, 7, 10, 11, 13, 9, 17, 4, 24, 17, 12, 9, 22
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Examples

			7^8-1 = 5764800 = 2^6 * 3 * 5^2 * 1201 and a(8) = bigomega(5764800) = 6+1+2+1 = 10. - _Bernard Schott_, Feb 02 2020
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), this sequence (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), A046051 (b=2).

Programs

  • Magma
    f:=func; [f(7^n- 1):n in [1..85]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[Table[7^n - 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

Möbius transform of A085032. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024075(n)). - Amiram Eldar, Feb 02 2020

A074249 a(n) = largest prime factor of 7^n-1.

Original entry on oeis.org

3, 3, 19, 5, 2801, 43, 4733, 1201, 1063, 2801, 293459, 181, 16148168401, 4733, 159871, 169553, 2767631689, 117307, 4534166740403, 4021, 11898664849, 10746341, 31479823396757, 1201, 31280679788951, 16148168401, 2583253
Offset: 1

Views

Author

N. J. A. Sloane, Sep 26 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[FactorInteger[7^n - 1] [[-1, 1]], {n, 30}]] (* Vincenzo Librandi, Aug 23 2012 *)
  • PARI
    a(n) = vecmax(factor(7^n-1)[,1]); \\ Michel Marcus, Dec 16 2017

Formula

a(n) = A006530(A024075(n)). - Michel Marcus, Dec 16 2017

Extensions

More terms from Benoit Cloitre, Sep 29 2002
Terms to a(80) in b-file from Vincenzo Librandi, Aug 23 2013
a(81)-a(378) in b-file from Amiram Eldar, Feb 02 2020
a(0) removed and a(379)-a(388) in b-file added by Max Alekseyev, Apr 25 2022, Sep 11 2022

A085035 Number of prime factors of cyclotomic(n,10), which is A019328(n), the value of the n-th cyclotomic polynomial evaluated at x=10.

Original entry on oeis.org

2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 1, 3, 2, 3, 3, 5, 3, 3, 5, 2, 3, 3, 1, 3, 1, 1, 2, 4, 4, 4, 3, 2, 4, 2, 1, 2, 3, 4, 2, 4, 2, 4, 2, 3, 2, 2, 3, 7, 1, 5, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 4, 5, 6, 2, 6, 2, 3, 2, 3, 3, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057951, number of prime factors of 10^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), this sequence (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 10]]][[2]], {n, 1, 100}]

Formula

a(n) = A001222(A019328(n)). - Ray Chandler, May 10 2017

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015

A085028 Number of prime factors of cyclotomic(n,3), which is A019321(n), the value of the n-th cyclotomic polynomial evaluated at x=3.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 4, 1, 3, 3, 2, 2, 3, 1, 4, 3, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 3, 4, 3, 2, 3, 2, 4, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057958, number of prime factors of 3^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), this sequence (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 3]]][[2]], {n, 1, 100}]

A085029 Number of prime factors of cyclotomic(n,4), which is A019322(n), the value of the n-th cyclotomic polynomial evaluated at x=4.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 4, 3, 3, 1, 5, 2, 2, 2, 3, 3, 4, 2, 4, 3, 3, 1, 4, 2, 4, 2, 3, 4, 5, 2, 2, 4, 6, 2, 5, 2, 6, 2, 4, 2, 5, 1, 2, 4, 3, 2, 4, 2, 4, 3, 3, 2, 5, 2, 5, 4, 3, 3, 4, 5, 4, 2, 7, 4, 7, 2, 2, 4, 3, 3, 4, 3, 6, 1, 3, 3, 5, 1, 6, 3, 5, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057957, number of prime factors of 4^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), this sequence (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 4]]][[2]], {n, 1, 100}]

A085031 Number of prime factors of cyclotomic(n,6), which is A019324(n), the value of the n-th cyclotomic polynomial evaluated at x=6.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 2, 1, 1, 4, 1, 3, 3, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 1, 4, 3, 3, 2, 3, 2, 3, 1, 3, 3, 3, 2, 2, 4, 3, 3, 3, 4, 3, 1, 4, 3, 4, 3, 2, 2, 2, 5, 1, 3, 4, 3, 3, 2, 2, 4, 3, 3, 2, 3, 7, 2, 3, 1, 4, 2, 3, 1, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057955, number of prime factors of 6^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), this sequence (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 6]]][[2]], {n, 1, 100}]

A085030 Number of prime factors of cyclotomic(n,5), which is A019323(n), the value of the n-th cyclotomic polynomial evaluated at x=5.

Original entry on oeis.org

2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 4, 1, 3, 2, 2, 3, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 1, 1, 1, 2, 3, 3, 3, 4, 5, 1, 1, 2, 2, 2, 3, 3, 3, 4, 3, 2, 5, 4, 4, 2, 2, 3, 3, 3, 5, 2, 3, 2, 3, 2, 2, 4, 3, 2, 3, 4, 3, 1, 6, 1, 2, 1, 4, 3, 4, 2, 3, 3, 4, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057956, number of prime factors of 5^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), this sequence (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 5]]][[2]], {n, 1, 100}]

A085033 Number of prime factors of cyclotomic(n,8), which is A019326(n), the value of the n-th cyclotomic polynomial evaluated at x=8.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 4, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 4, 5, 1, 2, 3, 3, 4, 5, 2, 5, 3, 4, 2, 4, 1, 4, 4, 3, 3, 5, 2, 3, 3, 2, 8, 7, 4, 4, 3, 2, 3, 5, 3, 4, 3, 2, 3, 2, 2, 5, 7, 4, 5, 6, 2, 6, 5, 4, 6, 3, 1, 7, 3, 4, 5, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057953, number of prime factors of 8^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), this sequence (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 8]]][[2]], {n, 1, 100}]

A085034 Number of prime factors of cyclotomic(n,9), which is A019327(n), the value of the n-th cyclotomic polynomial evaluated at x=9.

Original entry on oeis.org

3, 2, 2, 2, 3, 1, 2, 3, 3, 2, 4, 1, 2, 2, 3, 2, 5, 1, 4, 1, 4, 2, 3, 3, 4, 2, 5, 2, 6, 1, 5, 2, 3, 2, 3, 1, 5, 2, 8, 2, 5, 2, 3, 3, 5, 2, 7, 2, 7, 4, 5, 2, 5, 1, 5, 3, 6, 2, 4, 3, 4, 3, 5, 2, 4, 1, 5, 3, 7, 3, 6, 2, 6, 3, 7, 4, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057952, number of prime factors of 9^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), this sequence (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 9]]][[2]], {n, 1, 100}]
Showing 1-10 of 10 results.