cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A057958 Number of prime factors of 3^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 3, 2, 5, 3, 5, 2, 7, 3, 6, 3, 8, 2, 5, 5, 10, 3, 8, 3, 10, 4, 7, 3, 11, 5, 5, 6, 9, 4, 11, 4, 12, 5, 8, 6, 12, 3, 7, 7, 13, 4, 11, 3, 11, 9, 6, 5, 17, 7, 10, 6, 9, 4, 13, 8, 13, 7, 9, 3, 17, 3, 8, 6, 14, 7, 12, 4, 12, 6, 11, 2, 16, 5, 8, 10, 11, 7, 15, 4, 18, 9, 8, 5, 18, 7, 6, 8, 16, 4, 19, 5
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), this sequence (b=3), A046051 (b=2).

Programs

Formula

Mobius transform of A085028. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024023(n)). - Amiram Eldar, Feb 01 2020

Extensions

Offset corrected by Amiram Eldar, Feb 01 2020

A085035 Number of prime factors of cyclotomic(n,10), which is A019328(n), the value of the n-th cyclotomic polynomial evaluated at x=10.

Original entry on oeis.org

2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 1, 3, 2, 3, 3, 5, 3, 3, 5, 2, 3, 3, 1, 3, 1, 1, 2, 4, 4, 4, 3, 2, 4, 2, 1, 2, 3, 4, 2, 4, 2, 4, 2, 3, 2, 2, 3, 7, 1, 5, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 4, 5, 6, 2, 6, 2, 3, 2, 3, 3, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057951, number of prime factors of 10^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), this sequence (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 10]]][[2]], {n, 1, 100}]

Formula

a(n) = A001222(A019328(n)). - Ray Chandler, May 10 2017

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015

A085029 Number of prime factors of cyclotomic(n,4), which is A019322(n), the value of the n-th cyclotomic polynomial evaluated at x=4.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 4, 3, 3, 1, 5, 2, 2, 2, 3, 3, 4, 2, 4, 3, 3, 1, 4, 2, 4, 2, 3, 4, 5, 2, 2, 4, 6, 2, 5, 2, 6, 2, 4, 2, 5, 1, 2, 4, 3, 2, 4, 2, 4, 3, 3, 2, 5, 2, 5, 4, 3, 3, 4, 5, 4, 2, 7, 4, 7, 2, 2, 4, 3, 3, 4, 3, 6, 1, 3, 3, 5, 1, 6, 3, 5, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057957, number of prime factors of 4^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), this sequence (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 4]]][[2]], {n, 1, 100}]

A085031 Number of prime factors of cyclotomic(n,6), which is A019324(n), the value of the n-th cyclotomic polynomial evaluated at x=6.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 2, 1, 1, 4, 1, 3, 3, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 1, 4, 3, 3, 2, 3, 2, 3, 1, 3, 3, 3, 2, 2, 4, 3, 3, 3, 4, 3, 1, 4, 3, 4, 3, 2, 2, 2, 5, 1, 3, 4, 3, 3, 2, 2, 4, 3, 3, 2, 3, 7, 2, 3, 1, 4, 2, 3, 1, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057955, number of prime factors of 6^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), this sequence (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 6]]][[2]], {n, 1, 100}]

A085032 Number of prime factors of cyclotomic(n,7), which is A019325(n), the value of the n-th cyclotomic polynomial evaluated at x=7.

Original entry on oeis.org

2, 3, 2, 3, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 1, 2, 3, 3, 2, 2, 5, 1, 3, 1, 3, 3, 3, 1, 2, 1, 3, 2, 3, 2, 3, 2, 2, 3, 2, 1, 2, 1, 4, 1, 4, 2, 3, 1, 1, 4, 4, 1, 4, 2, 4, 3, 1, 4, 5, 2, 4, 3, 3, 4, 2, 3, 5, 2, 2, 1, 3, 3, 2, 3, 5, 4, 7, 1
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057954, number of prime factors of 7^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), this sequence (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 7]]][[2]], {n, 1, 100}]

A085030 Number of prime factors of cyclotomic(n,5), which is A019323(n), the value of the n-th cyclotomic polynomial evaluated at x=5.

Original entry on oeis.org

2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 4, 1, 3, 2, 2, 3, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 1, 1, 1, 2, 3, 3, 3, 4, 5, 1, 1, 2, 2, 2, 3, 3, 3, 4, 3, 2, 5, 4, 4, 2, 2, 3, 3, 3, 5, 2, 3, 2, 3, 2, 2, 4, 3, 2, 3, 4, 3, 1, 6, 1, 2, 1, 4, 3, 4, 2, 3, 3, 4, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057956, number of prime factors of 5^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), this sequence (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 5]]][[2]], {n, 1, 100}]

A085033 Number of prime factors of cyclotomic(n,8), which is A019326(n), the value of the n-th cyclotomic polynomial evaluated at x=8.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 4, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 4, 5, 1, 2, 3, 3, 4, 5, 2, 5, 3, 4, 2, 4, 1, 4, 4, 3, 3, 5, 2, 3, 3, 2, 8, 7, 4, 4, 3, 2, 3, 5, 3, 4, 3, 2, 3, 2, 2, 5, 7, 4, 5, 6, 2, 6, 5, 4, 6, 3, 1, 7, 3, 4, 5, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057953, number of prime factors of 8^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), this sequence (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 8]]][[2]], {n, 1, 100}]

A085034 Number of prime factors of cyclotomic(n,9), which is A019327(n), the value of the n-th cyclotomic polynomial evaluated at x=9.

Original entry on oeis.org

3, 2, 2, 2, 3, 1, 2, 3, 3, 2, 4, 1, 2, 2, 3, 2, 5, 1, 4, 1, 4, 2, 3, 3, 4, 2, 5, 2, 6, 1, 5, 2, 3, 2, 3, 1, 5, 2, 8, 2, 5, 2, 3, 3, 5, 2, 7, 2, 7, 4, 5, 2, 5, 1, 5, 3, 6, 2, 4, 3, 4, 3, 5, 2, 4, 1, 5, 3, 7, 3, 6, 2, 6, 3, 7, 4, 4, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057952, number of prime factors of 9^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), this sequence (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 9]]][[2]], {n, 1, 100}]

A002591 Largest prime factor of 3^(2n+1) - 1.

Original entry on oeis.org

2, 13, 11, 1093, 757, 3851, 797161, 4561, 34511, 363889, 368089, 1001523179, 391151, 8209, 20381027, 4404047, 2413941289, 2664097031, 17189128703, 797161, 86950696619, 380808546861411923, 927001, 96656723, 131713, 99810171997
Offset: 0

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 28.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Together with A274909 forms bisection of A074477.Cf. A057958, A059885, A085028, A133801, A235366.

Programs

  • Mathematica
    Table[FactorInteger[3^(2n-1)-1][[-1,1]],{n,30}] (* Harvey P. Dale, Oct 19 2022 *)

Formula

a(n) = A074477(2n+1). - Max Alekseyev, May 22 2022

Extensions

Corrected and extended by Jud McCranie, Jan 03 2001
Terms up to a(307) in b-file from Sean A. Irvine, Apr 20 2014
a(0) prepended and a(308)-a(344) added to b-file by Max Alekseyev, Apr 24 2019, Sep 10 2020, Aug 26 2021, May 22 2022
Showing 1-10 of 10 results.