cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112937 Logarithmic derivative of A112936 such that a(n)=(1/3)*A112936(n+1) for n>0, where A112936 equals the INVERT transform (with offset) of triple factorials A008544.

Original entry on oeis.org

1, 5, 37, 377, 4981, 81305, 1580797, 35637377, 913115701, 26189790425, 830916198157, 28883617580177, 1091455878504421, 44541746007215945, 1952125704702209917, 91440056107001450177, 4558596081095404198741
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2005

Keywords

Examples

			log(1+x + 3*x*[x + 5*x^2 + 37*x^3 + 377*x^4 + 4981*x^5 +...])
= x + 5/2*x^2 + 37/3*x^3 + 377/4*x^4 + 4981/5*x^5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+3*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}

Formula

G.f.: log(1+x + 3*x*[Sum_{k>=1} a(n)]) = Sum_{k>=1} a(n)/n*x^n.