cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112945 Number of unrooted regular odd-valent planar maps with 4 vertices; maps are considered up to orientation-preserving homeomorphisms and the vertices are of valency 2n+1.

Original entry on oeis.org

0, 6, 468, 80600, 16016560, 3360790440, 728936019504, 161858688461184, 36580777518027600, 8382066029146609800, 1941971956789550319920, 454006489072843947528288, 106944132919124515725427808
Offset: 0

Views

Author

Valery A. Liskovets, Oct 10 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n/6) Binomial[2n, n]^4 + (n/2) Binomial[2n, n]^2 + (2/3) Boole[ Divisible[2n+1, 3]] Binomial[2 Floor[n/3], Floor[n/3]] Binomial[2n, n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2019 *)

Formula

a(n) = (n/6)*binomial(2n, n)^4+(n/2)*binomial(2n, n)^2+(2/3)*delta(3|(2n+1))* binomial(2*floor(n/3), floor(n/3))*binomial(2n, n) where delta(3|(2n+1))=1 if 3|(2n+1) and =0 otherwise.

A113181 Number of unrooted two-vertex (or, dually, two-face) regular planar maps of even valency 2n considered up to orientation-preserving homeomorphism.

Original entry on oeis.org

1, 3, 14, 95, 859, 9130, 106039, 1297295, 16428300, 213388961, 2827645453, 38086408002, 520062618300, 7184570776213, 100256059855188, 1411319038583375, 20021022607979629, 285965560309310708, 4109498933510809561, 59380204746202961953, 862266486434574492404
Offset: 1

Views

Author

Valery A. Liskovets, Oct 19 2005

Keywords

Examples

			There exist 3 planar maps with two 4-valent vertices: a map with four parallel edges and two different maps with two parallel edges and one loop in each vertex. Therefore a(2)=3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[2n, n]/4 + (1/(4n)) Sum[EulerPhi[k] Binomial[2n/k - 1, Floor[n/k]]^2, {k, Divisors[2n]}];
    Array[a, 21] (* Jean-François Alcover, Jul 24 2018 *)
  • PARI
    a(n) = binomial(2*n, n)/4 + sumdiv(2*n, k, eulerphi(k)* binomial(2*n/k-1, (n\k))^2)/(4*n); \\ Michel Marcus, Oct 14 2015

Formula

a(n) = binomial(2*n,n)/4 + (1/(4*n))*Sum_{k|2*n} phi(k)*binomial((2*n/k)-1,floor(n/k))^2 where phi(k) is the Euler function A000010.

Extensions

More terms from Michel Marcus, Oct 14 2015

A113182 Number of unrooted two-vertex (or, dually, two-face) regular planar maps of valency n considered up to orientation-preserving homeomorphism.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 39, 95, 308, 859, 3013, 9130, 33300, 106039, 394340, 1297295, 4878109, 16428300, 62232321, 213388961, 812825244, 2827645453, 10818489817, 38086408002, 146250545528, 520062618300, 2003199281223, 7184570776213
Offset: 1

Views

Author

Valery A. Liskovets, Oct 19 2005

Keywords

Comments

Bisections are A112944 and A113181.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], (1/(2n))(Sum[EulerPhi[d] Binomial[2 Floor[(n-1)/(2d)], Floor[(n-1)/(2d)]]^2, {d, Divisors[n]}] + n Binomial[n-1, (n-1)/2]), (1/4)((2 Sum[EulerPhi[d] Binomial[n/d-1, Floor[n/(2d)]]^2, {d, Divisors[ n]}])/n + Binomial[n, n/2])];
    Array[a, 28] (* Jean-François Alcover, Aug 30 2019 *)

A112948 Number of unrooted 3-regular planar maps with 2n vertices, up to orientation-preserving isomorphisms.

Original entry on oeis.org

2, 6, 26, 191, 1904, 22078, 282388, 3848001, 54953996, 814302292
Offset: 1

Views

Author

Valery A. Liskovets, Oct 10 2005

Keywords

Comments

A 3-regular map is a regular map with valency 3.

Examples

			There exist 2 planar maps with two 3-valent vertices: a map with three parallel edges and a map with one loop in each vertex and a link connecting the vertices. Therefore a(1)=2.
		

Crossrefs

Cf. A112944, A112945, A112949 (5-regular), A005470.
3-regular maps on the torus: A292408.
Showing 1-4 of 4 results.