A113041 Number of solutions to +-p(1)+-p(2)+-...+-p(2n-1) = 2, where p(i) is the i-th prime.
1, 0, 1, 3, 9, 27, 78, 249, 782, 2574, 8676, 29714, 102162, 356797, 1268990, 4521769, 16134137, 58061535, 210499244, 767154326, 2809323733, 10342098153, 38281849044, 142249547127, 527095215036, 1966843667482, 7368829743507, 27636276043171, 103876045792060
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..1000 (first 120 terms from Alois P. Heinz)
Crossrefs
Programs
-
Maple
A113041:=proc(n) local i,j,p,t; t:= NULL; for j to 2*n-1 by 2 do p:=1; for i to j do p:=p*(x^(-ithprime(i))+x^(ithprime(i))); od; t:=t,coeff(p,x,2); od; t; end; # second Maple program sp:= proc(n) sp(n):= `if`(n=0, 0, ithprime(n)+sp(n-1)) end: b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1, b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1))) end: a:= n-> b(2, 2*n-1): seq(a(n), n=1..30); # Alois P. Heinz, Aug 05 2012
-
Mathematica
sp[n_] := sp[n] = If[n == 0, 0, Prime[n] + sp[n-1]]; b[n_, i_] := b[n, i] = If[n > sp[i], 0, If[i == 0, 1, b[n + Prime[i], i-1] + b[Abs[n - Prime[i]], i-1]]]; a[n_] := b[2, 2n-1]; Array[a, 30] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)
Formula
a(n) = [x^2] Product_{k=1..2*n-1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 30 2024
Comments