A113044 Number of ways you can split the set of the first n primes into two proper subsets of which the sum of one is thrice the sum of the other.
0, 0, 0, 0, 2, 0, 0, 0, 5, 0, 11, 0, 0, 0, 75, 0, 203, 0, 558, 0, 1559, 0, 0, 0, 12786, 0, 37147, 0, 108491, 0, 321551, 0, 964713, 0, 2904950, 0, 8775407, 0, 0, 0, 0, 0, 0, 0, 760875083, 0, 0, 0, 7272292133, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2063638853745109
Offset: 1
Keywords
Links
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A022894.
Programs
-
Maple
A113044:=proc(n) local i,j,p,t; t:=0; for j from 2 to n do p:=1; for i to j do p:=p*(x^(-3*ithprime(i))+x^(ithprime(i))); od; t:=t,coeff(p,x,0); od; t; end; # second Maple program sp:= proc(n) option remember; `if` (n=1, 2, sp(n-1) +ithprime(n)) end: b:= proc() option remember; local i, j, t; `if` (args[1]=0, `if` (nargs=2, 1, b(args[t] $t=2..nargs)), add (`if` (args[j] -ithprime (args[nargs]) <0, 0, b(sort ([seq (args[i] -`if` (i=j, ithprime (args[nargs]), 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= sp(n); `if` (irem(m, 4)=0, b(m/4, 3*m/4, n), 0) end: seq (a(n), n=1..70); # Alois P. Heinz, Nov 02 2011
-
Mathematica
d = {1}; nMax = 100; Lst = {}; Do[ p = Prime[n]; d = PadLeft[d, Length[d] + 4 p] + PadRight[d, Length[d] + 4 p]; AppendTo[Lst, d[[-Ceiling[Length[d]/4]]]]; , {n, 1, nMax}]; Lst(* Ray Chandler, Mar 09 2014 *)
Extensions
More terms from Alois P. Heinz, Nov 02 2011