cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113063 Associated with theta series of hexagonal net with respect to a node.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 1, 0, 0, 2, 0, 4, 0, 0, 0, 1, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 4, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 13 2005

Keywords

Comments

Denoted by |lambda(n)| on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - Michael Somos, Jun 04 2015

Examples

			G.f. = x + 2*x^3 + x^4 + 2*x^7 + 2*x^9 + 2*x^12 + 2*x^13 + x^16 + 2*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, 1, 1, -1, -1, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* Michael Somos, Jun 04 2015 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[3, e_] := 2; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, 1, 1, -1, -1, 1, -1][d%9 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 2, p%6==1, e+1, !(e%2))))};

Formula

Moebius transform is period 9 sequence [ 1, -1, 1, 1, -1, -1, 1, -1, 0, ...].
a(n) is multiplicative with a(p^e) = 2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 2, 5 (mod 6).
a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = 2 * A002324(n).
3 * a(n) = A113062(n) unless n=0.
G.f.: Sum_{k>0} f(x^k) + f(x^(3*k)) where f(x) := x / (1 + x + x^2). - Michael Somos, Jun 04 2015
a(n) = |A123477(n)|. - Michael Somos, Dec 10 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(9*sqrt(3)) = 0.806133... (A121839 - 1). - Amiram Eldar, Dec 28 2023