cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113062 Expansion of theta series of hexagonal net with respect to a node.

Original entry on oeis.org

1, 3, 0, 6, 3, 0, 0, 6, 0, 6, 0, 0, 6, 6, 0, 0, 3, 0, 0, 6, 0, 12, 0, 0, 0, 3, 0, 6, 6, 0, 0, 6, 0, 0, 0, 0, 6, 6, 0, 12, 0, 0, 0, 6, 0, 0, 0, 0, 6, 9, 0, 0, 6, 0, 0, 0, 0, 12, 0, 0, 0, 6, 0, 12, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 6, 6, 0, 0, 6, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 13 2005

Keywords

Comments

The hexagonal net is the familiar 2-dimensional honeycomb (not a lattice) in which each node has 3 neighbors.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*q + 6*q^3 + 3*q^4 + 6*q^7 + 6*q^9 + 6*q^12 + 6*q^13 + 3*q^16 + ...
		

References

  • A. F. Wells, Structural Inorganic Chemistry, Oxford, 5th ed., 1984; see Fig. 3.9(a.1).

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := 3*DivisorSum[n, {0, 1, -1, 1, 1, -1, -1, 1, -1}[[Mod[#, 9]+1]]&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 04 2015, after 1st PARI script *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * sumdiv(n, d, [ 0, 1, -1, 1, 1, -1, -1, 1, -1][d%9+1]))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 3 * prod(k=1, matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==3, 2, if(p%6==1, e+1, !(e%2))))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); abs( polcoeff( eta(x + A)^3 / eta(x^3 + A), n)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 6 * x * eta(x^9 + A)^3) / eta(x^3 + A), n))}; /* Michael Somos, Aug 15 2006 */

Formula

Moebius transform is period 9 sequence [ 3, -3, 3, 3, -3, -3, 3, -3, 0, ...].
Expansion of a(q^3) + c(q^3) in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Aug 15 2006
For n>0, a(n) = 3*b(n) where b(n)=A113063(n) is multiplicative and b(p^e) = 2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6).
a(3*n + 2) = 0. a(3*n + 1) = A005882(n) = A033685(3*n + 1) = -A005928(3*n + 1). a(3*n) = A004016(n) = A005928(3*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Dec 28 2023

Extensions

Definition corrected Michael Somos, Oct 17 2005

A123477 Expansion of (1 - b(q)) / 3 in powers of q where b(q) is a cubic AGM theta function.

Original entry on oeis.org

1, 0, -2, 1, 0, 0, 2, 0, -2, 0, 0, -2, 2, 0, 0, 1, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, 2, 0, 0, 2, 0, 0, 0, 0, -2, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, -2, 3, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 2, 0, 0, 2, 0, -2, 0, 0, -4, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Sep 27 2006

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Denoted by lambda(n) on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - Michael Somos, Dec 10 2017

Examples

			G.f. = q - 2*q^3 + q^4 + 2*q^7 - 2*q^9 - 2*q^12 + 2*q^13 + q^16 + 2*q^19 + ...
		

Crossrefs

Programs

  • Maple
    A123477 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if modp(p,6) = 1 then
                a := a*(e+1) ;
            elif modp(p,6) in {2,5} then
                a := a*(1+(-1)^e)/2 ;
            elif e > 0 then
                a := -2*a ;
            end if;
        end do:
        a ;
    end proc:
    seq(A123477(n),n=1..100) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, -3, 1, -1, 3, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* Michael Somos, Dec 10 2017 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9+1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, p%6==1, e+1, !(e%2))))};

Formula

Moebius transform is period 9 sequence [1, -1, -3, 1, -1, 3, 1, -1, 0, ...].
a(n) is multiplicative and a(p^e) = -2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6).
a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = -2*A002324(n).
-3*a(n) = A005928(n) unless n=0. |a(n)| = A113063(n).
Showing 1-2 of 2 results.