cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005928 G.f.: s(1)^3/s(3), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

Original entry on oeis.org

1, -3, 0, 6, -3, 0, 0, -6, 0, 6, 0, 0, 6, -6, 0, 0, -3, 0, 0, -6, 0, 12, 0, 0, 0, -3, 0, 6, -6, 0, 0, -6, 0, 0, 0, 0, 6, -6, 0, 12, 0, 0, 0, -6, 0, 0, 0, 0, 6, -9, 0, 0, -6, 0, 0, 0, 0, 12, 0, 0, 0, -6, 0, 12, -3, 0, 0, -6, 0, 0, 0, 0, 0, -6, 0, 6, -6, 0, 0, -6, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, -12, 0, 12, 0, 0, 0, -6, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Unsigned sequence is expansion of theta series of hexagonal net with respect to a node.
Cubic AGM theta functions: a(q) (see A004016), b(q) (this: A005928), c(q) (A005882).
Denoted by a_3(n) in Kassel and Reutenauer 2015. - Michael Somos, Jun 04 2015

Examples

			G.f. = 1 - 3*q + 6*q^3 - 3*q^4 - 6*q^7 + 6*q^9 + 6*q^12 - 6*q^13 - 3*q^16 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.34).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(9), 1), 100); A[1] - 3*A[2] + 6*A[4]; // Michael Somos, Jan 31 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, May 24 2013 *)
    a[ n_] := If[ n < 1, Boole[ n==0], -3 Sum[{1, -1, -3, 1, -1, 3, 1, -1, 0}[[ Mod[ d, 9, 1]]], {d, Divisors @ n}]]; (* Michael Somos, Sep 23 2013 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -3 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, if( p%6==1, e+1, !(e%2)))))}; \\ Michael Somos, May 20 2005
    
  • PARI
    {a(n) = my(A = x * O(x^n)); polcoeff( eta(x + A)^3 / eta(x^3 + A), n)}; \\ Michael Somos, May 20 2005
    
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, -3, 3, 9, -3, 3, -9, -3, 3] [d%9 + 1]))}; \\ Michael Somos, Dec 25 2007
    
  • PARI
    N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(n)-sigma(3*n))*x^n/n));
    Vec(gf) \\ Joerg Arndt, Jul 30 2011
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q)^3/eta(q^3))} \\ Altug Alkan, Mar 20 2018
    

Formula

a(n) is the coefficient of q^n in b(q)=eta(q)^3/eta(q^3) = (3/2)*a(q^3)-a(q)/2 where a(q)=theta(Hexagonal). - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 07 2002
From Michael Somos, May 20 2005: (Start)
Euler transform of period 3 sequence [ -3, -3, -2, ...].
a(n) = -3 * b(n) except for a(0) = 1, where b()=A123477() is multiplicative with b(p^e) = -2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 2, 5 (mod 6).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - 2*u*w^2 + u^2*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2*u6 - 2*u1*u2*u6 + 4*u2^2*u6 - 3*u2*u3^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1*u2*u3 + u1^2*u3 - 3*u1*u6^2 + u2^2*u3. (End)
a(3*n + 2) = 0. a(3*n + 1) = -A005882(n), a(3*n) = A004016(n). - Michael Somos, Jul 15 2005
a(n) = -3 * A123477(n) unless n=0. |a(n)| = A113062(n).
Moebius transform is period 9 sequence [-3, 3, 9, -3, 3, -9, -3, 3, 0, ...]. - Michael Somos, Dec 25 2007
Expansion of b(q) = a(q^3) - c(q^3) in powers of q where a(), b(), c() are cubic AGM theta functions. - Michael Somos, Dec 25 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(3/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033687.
G.f.: exp( Sum_{n>=1} (sigma(n)-sigma(3*n))*x^n/n ). - Joerg Arndt, Jul 30 2011
a(n) = (-1)^(mod(n, 3) = 1) * A113062(n). - Michael Somos, Sep 05 2014
a(2*n + 1) = -3 * A123530(n). a(4*n) = a(n). a(4*n + 1) = -3 * A253243(n). a(4*n + 2) = 0. a(4*n + 3) = 6 * A246838(n). a(6*n + 1) = -3 * A097195(n). a(6*n + 3) = 6 * A033762(n). - Michael Somos, Jun 04 2015
G.f.: 1 + Sum_{k>0} -3 * x^k / (1 + x^k + x^(2*k)) + 9 * x^(3*k) / (1 + x^(3*k) + x^(6*k)). - Michael Somos, Jun 04 2015
a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017

Extensions

Edited by M. F. Hasler, May 07 2018

A005882 Theta series of planar hexagonal lattice (A2) with respect to deep hole.

Original entry on oeis.org

3, 3, 6, 0, 6, 3, 6, 0, 3, 6, 6, 0, 6, 0, 6, 0, 9, 6, 0, 0, 6, 3, 6, 0, 6, 6, 6, 0, 0, 0, 12, 0, 6, 3, 6, 0, 6, 6, 0, 0, 3, 6, 6, 0, 12, 0, 6, 0, 0, 6, 6, 0, 6, 0, 6, 0, 9, 6, 6, 0, 6, 0, 0, 0, 6, 9, 6, 0, 0, 6, 6, 0, 12, 0, 6, 0, 6, 0, 0, 0, 6, 6, 12, 0, 0, 3, 12, 0, 0, 6, 6, 0, 6, 0, 6, 0, 3, 6, 0, 0, 12
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
On page 111 of Conway and Sloane is "If the origin is moved to a deep hole the theta series is Theta_{hex+[1]}(z) = theta_2(z) psi_6(3z) + theta_3(z) psi_3(3z) = 3 q^{1/3} + 3 q^{4/3} + 6 q^{7/3} + 6 q^{13/3} + ... (63)" where the psi_k() for integer k is defined on page 103 equation (11) as psi_k(z) = e^{Pi i/z^2} theta_3(Pi z/k | z) = Sum_{m in Z} q^{(m + 1/k)^2}. - Michael Somos, Sep 10 2018

Examples

			G.f. = 3 + 3*x + 6*x^2 + 6*x^4 + 3*x^5 + 6*x^6 + 3*x^8 + 6*x^9 + 6*x^10 + ...
G.f. = 3*q + 3*q^4 + 6*q^7 + 6*q^13 + 3*q^16 + 6*q^19 + 3*q^25 + 6*q^28 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially same as A033685 and A033687.

Programs

  • Magma
    Basis( ModularForms( Gamma1(9), 1), 302)[2] * 3; /* Michael Somos, Jul 19 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ 3 QPochhammer[ q^3]^3 / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Jul 19 2014 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * eta(x^3 + A)^3 / eta(x + A), n))}; /* Michael Somos, Aug 15 2006 */
    

Formula

Expansion of q^(-1/3) * 3 * eta(q^3)^3 / eta(q) in powers of q.
Expansion of q^(-1/3) * c(q) in powers of q where c(q) is the third cubic AGM theta function.
Given g.f. A(x), then B(x) = x*A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 2*u*w^2 - u^2*w. - Michael Somos, Aug 15 2006
G.f.: 3 Product_{k>0} (1-q^(3k))^3/(1-q^k).
G.f.: Sum_{u,v in Z} x^(u*u + u*v + v*v + u + v). - Michael Somos, Jul 19 2014
a(n) = 3 * A033687(n). a(n) = A113062(3*n + 1) = A033685(3*n + 1).
Expansion of 2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 07 2018
Sum_{k=1..n} a(k) ~ 2*Pi*n/sqrt(3). - Vaclav Kotesovec, Dec 17 2022

A008486 Expansion of (1 + x + x^2)/(1 - x)^2.

Original entry on oeis.org

1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/3); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Coordination sequence for planar net 6^3 (the graphite net, or the graphene crystal) - that is, the number of atoms at graph distance n from any fixed atom. Also for the hcb or honeycomb net. - N. J. A. Sloane, Jan 06 2013, Mar 31 2018
Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_3].
Conjecture: This is also the maximum number of edges possible in a planar simple graph with n+2 vertices. - Dmitry Kamenetsky, Jun 29 2008
The conjecture is correct. Proof: For n=0 the theorem holds, the maximum planar graph has n+2=2 vertices and 1 edge. Now suppose that we have a connected planar graph with at least 3 vertices. If it contains a face that is not a triangle, we can add an edge that divides this face into two without breaking its planarity. Hence all maximum planar graphs are triangulations. Euler's formula for planar graphs states that in any planar simple graph with V vertices, E edges and F faces we have V+F-E=2. If all faces are triangles, then F=2E/3, which gives us E=3V-6. Hence for n>0 each maximum planar simple graph with n+2 vertices has 3n edges. - Michal Forisek, Apr 23 2009
a(n) = sum of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see e.g. A008486). - Jaroslav Krizek, Nov 18 2009
a(n) = partial sums of A158799(n). Partial sums of a(n) = A005448(n). - Jaroslav Krizek, Dec 06 2009
Integers n dividing a(n) = a(n-1) - a(n-2) with initial conditions a(0)=0, a(1)=1 (see A128834 with offset 0). - Thomas M. Bridge, Nov 03 2013
a(n) is conjectured to be the number of polygons added after n iterations of the polygon expansions (type A, B, C, D & E) shown in the Ngaokrajang link. The patterns are supposed to become the planar Archimedean net 3.3.3.3.3.3, 3.6.3.6, 3.12.12, 3.3.3.3.6 and 4.6.12 respectively when n - > infinity. - Kival Ngaokrajang, Dec 28 2014
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I. - Ray Chandler, Nov 21 2016
Conjecture: let m = n + 2, p is the polyhedron formed by the convex hull of m points, q is the number of quadrilateral faces of p (see the Wikipedia link below), and f(m) = a(n) - q. Then f(m) would be the solution of the Thompson problem for all m in 3-space. - Sergey Pavlov, Feb 03 2017
Also, sequence defined by a(0)=1, a(1)=3, c(0)=2, c(1)=4; and thereafter a(n) = c(n-1) + c(n-2), and c consists of the numbers missing from a (see A001651). - Ivan Neretin, Mar 28 2017

Examples

			G.f. = 1 + 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + 24*x^8 + ...
From _Omar E. Pol_, Aug 20 2011: (Start)
Illustration of initial terms as triangles:
.                                              o
.                                 o           o o
.                      o         o o         o   o
.             o       o o       o   o       o     o
.      o     o o     o   o     o     o     o       o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    3      6        9          12           15
(End)
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.

Crossrefs

Partial sums give A005448.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Haskell
    a008486 0 = 1; a008486 n = 3 * n
    a008486_list = 1 : [3, 6 ..]  -- Reinhard Zumkeller, Apr 17 2015
  • Magma
    [0^n+3*n: n in [0..90] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) / (1 - x)^2, {x, 0, 80}], x] (* Vincenzo Librandi, Nov 23 2014 *)
    a[ n_] := If[ n == 0, 1, 3 n]; (* Michael Somos, Apr 17 2015 *)
  • PARI
    {a(n) = if( n==0, 1, 3 * n)}; /* Michael Somos, May 05 2015 */
    

Formula

a(0) = 1; a(n) = 3*n = A008585(n), n >= 1.
Euler transform of length 3 sequence [3, 0, -1]. - Michael Somos, Aug 04 2009
a(n) = a(n-1) + 3 for n >= 2. - Jaroslav Krizek, Nov 18 2009
a(n) = 0^n + 3*n. - Vincenzo Librandi, Aug 21 2011
a(n) = -a(-n) unless n = 0. - Michael Somos, May 05 2015
E.g.f.: 1 + 3*exp(x)*x. - Stefano Spezia, Aug 07 2022

A226535 Expansion of b(-q) in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 0, -6, -3, 0, 0, 6, 0, -6, 0, 0, 6, 6, 0, 0, -3, 0, 0, 6, 0, -12, 0, 0, 0, 3, 0, -6, -6, 0, 0, 6, 0, 0, 0, 0, 6, 6, 0, -12, 0, 0, 0, 6, 0, 0, 0, 0, 6, 9, 0, 0, -6, 0, 0, 0, 0, -12, 0, 0, 0, 6, 0, -12, -3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, -6, -6, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Sep 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as f(z) in Case B which is associated with F(t) the g.f. of A006077.

Examples

			G.f. = 1 + 3*q - 6*q^3 - 3*q^4 + 6*q^7 - 6*q^9 + 6*q^12 + 6*q^13 - 3*q^16 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^3 / QPochhammer[ -q^3], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^3, n))}

Formula

Expansion of f(q)^3 / f(q^3) in powers of q where f() is a Ramanujan theta function.
Expansion of 2*b(q^4) - b(q) = b(q^2)^3 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^3 in powers of q.
Euler transform of period 12 sequence [ 3, -6, 2, -3, 3, -4, 3, -3, 2, -6, 3, -2, ...].
Moebius transform is period 36 sequence [ 3, -3, -9, -3, -3, 9, 3, 3, 0, 3, -3, 9, 3, -3, 9, -3, -3, 0, 3, 3, -9, 3, -3, -9, 3, -3, 0, -3, -3, -9, 3, 3, 9, 3, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227696.
G.f.: f(q) = F(t(q)) where F() is the g.f. of A006077 and t() is the g.f. of A227454.
G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^(3*k)).
a(3*n + 2) = a(4*n + 2) = 0.
a(n) = (-1)^n * A005928(n) = (-1)^(((n+1) mod 6 ) > 3) * A113062(n). A113062(n) = |a(n)|.
a(3*n) = A180318(n). a(2*n + 1) = 3 * A123530(n). a(4*n) = A005928(n).

A113063 Associated with theta series of hexagonal net with respect to a node.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 1, 0, 0, 2, 0, 4, 0, 0, 0, 1, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 4, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 13 2005

Keywords

Comments

Denoted by |lambda(n)| on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - Michael Somos, Jun 04 2015

Examples

			G.f. = x + 2*x^3 + x^4 + 2*x^7 + 2*x^9 + 2*x^12 + 2*x^13 + x^16 + 2*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, 1, 1, -1, -1, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* Michael Somos, Jun 04 2015 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[3, e_] := 2; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, 1, 1, -1, -1, 1, -1][d%9 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 2, p%6==1, e+1, !(e%2))))};

Formula

Moebius transform is period 9 sequence [ 1, -1, 1, 1, -1, -1, 1, -1, 0, ...].
a(n) is multiplicative with a(p^e) = 2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 2, 5 (mod 6).
a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = 2 * A002324(n).
3 * a(n) = A113062(n) unless n=0.
G.f.: Sum_{k>0} f(x^k) + f(x^(3*k)) where f(x) := x / (1 + x + x^2). - Michael Somos, Jun 04 2015
a(n) = |A123477(n)|. - Michael Somos, Dec 10 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(9*sqrt(3)) = 0.806133... (A121839 - 1). - Amiram Eldar, Dec 28 2023

A290705 Theta series of triamond.

Original entry on oeis.org

1, 3, 0, 6, 0, 6, 8, 12, 6, 9, 0, 6, 0, 18, 0, 12, 12, 12, 0, 18, 0, 12, 24, 12, 8, 21, 0, 24, 0, 6, 0, 24, 6, 24, 0, 12, 0, 30, 24, 12, 24, 12, 0, 30, 0, 30, 0, 24, 24, 27, 0, 12, 0, 18, 32, 36, 0, 24, 0, 18, 0, 30, 0, 36, 12, 12, 0, 42, 0, 24, 48, 12, 30
Offset: 0

Views

Author

Andrey Zabolotskiy, Aug 09 2017

Keywords

Comments

Theta series with respect to a node of a lattice known as triamond, Laves graph [embedded in space], K_4 lattice, (10,3)-a, or srs net. This lattice possesses the "strong isotropic" property; the only other lattice that has this property in 3 dimensions is the diamond lattice. Unlike diamond, triamond is chiral.
A004013 and 3*A045828, interleaved.

Crossrefs

See A038620 for coordination sequence.

Programs

  • Mathematica
    (* count lattice sites straightforwardly *)
    cell = Join @@ ({#, # + {1, 1, 1}/2} & /@ {{0, 0, 0}, {1/4, 0, 1/4}, {-1/4, -1/4, 0}, {0, 1/4, -1/4}}); (* lattice sites in a conventional bcc unit cell *)
    n = 10;
    s = O[q]^(n^2 + 1) + Sum[q^(8 Norm[a + {i, j, k}]^2), {i, -n-1, n+1}, {j, -n-1,  n+1}, {k, -n-1, n+1}, {a, cell}];
    CoefficientList[Normal[s], q] &
    (* or use the generation function *)
    a[n_] := SeriesCoefficient[ EllipticTheta[3, 0, x^8]^3 + EllipticTheta[ 2, 0, x^8]^3 + 3/4 EllipticTheta[3, 0, x^2] EllipticTheta[2, 0, x^2]^2, {x, 0, n}];

A338947 Number of vertices of a hexagonal tessellation that lie on subsequent circles centered at a vertex of one hexagon.

Original entry on oeis.org

1, 3, 6, 3, 6, 6, 6, 6, 3, 6, 12, 3, 6, 6, 6, 6, 6, 12, 6, 6, 9, 6, 12, 6, 12, 3, 6, 6, 6, 6, 6, 6, 12, 12, 12, 6, 3, 6, 6, 6, 12, 6, 12, 3, 6, 6, 12, 12, 6, 6, 18, 6, 6, 12, 6, 6, 9, 12, 6, 6, 6, 12, 12, 6, 6, 9, 6, 12, 6, 6, 12, 12, 6, 6, 12, 6, 12, 6, 6, 6, 12, 12, 3, 12, 6, 6, 24, 6, 12, 6, 3, 12, 6, 6, 12, 6, 6, 12
Offset: 0

Views

Author

Szymon Lukaszyk, Nov 17 2020

Keywords

Comments

Radii of these circles are square roots of A003136.
This is A113062 with zeros dropped. - Andrey Zabolotskiy, Jun 21 2022

Crossrefs

Cf. A003136, A113062; A338992 (similar but with circles centered at the center of one hexagon); A104888, A106030, A317990 (terms multiplied by 3 in agreement for up to 17 term).

Extensions

a(0) changed from 0 to 1 by Andrey Zabolotskiy, Jun 21 2022
Showing 1-7 of 7 results.