cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113095 Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^4](n-1,k-1) + [T^4](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^4 is the matrix 4th power of T.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 46, 66, 21, 1, 1504, 2398, 978, 85, 1, 146821, 255113, 122914, 14962, 341, 1, 45236404, 84425001, 46001193, 7046354, 235122, 1365, 1, 46002427696, 91159696960, 54661544301, 9933169553, 432627794, 3738738, 5461, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Comments

Column 0 of the matrix power p, T^p, equals the number of 4-tournament sequences having initial term p (see A113092 for definitions).

Examples

			Triangle T begins:
  1;
  1,1;
  4,5,1;
  46,66,21,1;
  1504,2398,978,85,1;
  146821,255113,122914,14962,341,1;
  45236404,84425001,46001193,7046354,235122,1365,1; ...
Matrix third power T^3 (A113099) begins:
  1;
  3,1;
  27,15,1;
  693,513,63,1;
  52812,47619,8289,255,1; ...
 where column 0 equals A113100.
Matrix 4th power T^4 (A113101) begins:
  1;
  4,1;
  46,20,1;
  1504,894,84,1;
  146821,108292,14622,340,1;
  45236404,39188597,6812596,233758,1364,1; ...
 where adjacent sums in row n of T^4 forms row n+1 of T.
		

Crossrefs

Cf. A097710, A113084, A113106; A113092, A113096 (column 0), A113097 (T^2), A113099 (T^3), A113101 (T^4).

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,k+1])}

Formula

Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^4] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+3*j)] + x*y*GF[T^(4*p)].