A113099
Triangle T, read by rows, equal to the matrix cube of triangle A113095, which satisfies the recurrence: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).
Original entry on oeis.org
1, 3, 1, 27, 15, 1, 693, 513, 63, 1, 52812, 47619, 8289, 255, 1, 12628008, 13176189, 2920527, 131841, 1023, 1, 9924266772, 11586274263, 3078907929, 181929087, 2101761, 4095, 1, 26507035453923, 33825995695125, 10365262415703
Offset: 0
Triangle begins:
1;
3,1;
27,15,1;
693,513,63,1;
52812,47619,8289,255,1;
12628008,13176189,2920527,131841,1023,1;
9924266772,11586274263,3078907929,181929087,2101761,4095,1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^3)[n+1,k+1])}
A113101
Triangle T, read by rows, equal to the matrix 4th power of triangle A113095, which satisfies the recurrence: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).
Original entry on oeis.org
1, 4, 1, 46, 20, 1, 1504, 894, 84, 1, 146821, 108292, 14622, 340, 1, 45236404, 39188597, 6812596, 233758, 1364, 1, 46002427696, 45157269264, 9504275037, 428894516, 3733278, 5460, 1, 159443238441379, 172969059719500
Offset: 0
Triangle begins:
1;
4,1;
46,20,1;
1504,894,84,1;
146821,108292,14622,340,1;
45236404,39188597,6812596,233758,1364,1;
46002427696,45157269264,9504275037,428894516,3733278,5460,1;
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^4)[n+1,k+1])}
A113097
Triangle T, read by rows, equal to the matrix square of triangle A113095, which satisfies the recurrence: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).
Original entry on oeis.org
1, 2, 1, 13, 10, 1, 242, 237, 42, 1, 13228, 15296, 3741, 170, 1, 2241527, 2930006, 893528, 58909, 682, 1, 1237069018, 1775967132, 637702746, 54501208, 935709, 2730, 1, 2305369985312, 3563503353790, 1451785389252, 151058838746
Offset: 0
Triangle begins:
1;
2,1;
13,10,1;
242,237,42,1;
13228,15296,3741,170,1;
2241527,2930006,893528,58909,682,1;
1237069018,1775967132,637702746,54501208,935709,2730,1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^2)[n+1,k+1])}
A113093
Main diagonal of square table A113092; also, a(n) equals the n-th term in column 0 of the matrix n-th power of triangle A113095.
Original entry on oeis.org
1, 1, 13, 693, 146821, 124626530, 426524622399, 5893207147435867, 328422072384464274577, 73719657441008064407836359, 66567306698774377126527799872190
Offset: 0
-
{a(n,q=4)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^n)[n+1,1])}
A113094
Diagonal of square table A113092; also, a(n) equals the n-th term in column 0 of the matrix (n+1)-th power of triangle A113095.
Original entry on oeis.org
1, 2, 27, 1504, 330745, 289031301, 1011348629263, 14213347986246578, 802722082112213275116, 182118530044524172384716760, 165892108866362877173717099499469
Offset: 1
-
{a(n,q=4)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return(if(n<1,0,(M^n)[n,1]))}
A113100
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 3 and t_i = 3 (mod 3) and t_{i+1} <= 4*t_i for 1
Original entry on oeis.org
1, 3, 27, 693, 52812, 12628008, 9924266772, 26507035453923, 246323730279500082, 8100479557816637139288, 954983717308947379891713642, 407790020849346203244152231395953
Offset: 0
The tree of 4-tournament sequences of descendents of a node labeled (3) begins:
[3]; generation 1: 3->[6,9,12]; generation 2:
6->[9,12,15,18,21,24], 9->[12,15,18,21,24,27,30,33,36],
12->[15,18,21,24,27,30,33,36,39,42,45,48]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^3)[n+1,1])}
A113096
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 3) and t_{i+1} <= 4*t_i for 1
Original entry on oeis.org
1, 1, 4, 46, 1504, 146821, 45236404, 46002427696, 159443238441379, 1926751765436372746, 82540801108546193896804, 12696517688186899788062326096, 7084402815778394692932546017050054
Offset: 0
The tree of 4-tournament sequences of descendents
of a node labeled (1) begins:
[1]; generation 1: 1->[4]; generation 2: 4->[7,10,13,16];
generation 3: 7->[10,13,16,19,22,25,28],
10->[13,16,19,22,25,28,31,34,37,40],
13->[16,19,22,25,28,31,34,37,40,43,46,49,52],
16->[19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,1])}
A113098
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 3) and t_{i+1} <= 4*t_i for 1
Original entry on oeis.org
1, 2, 13, 242, 13228, 2241527, 1237069018, 2305369985312, 14874520949557933, 338242806223319079422, 27474512329417917714396073, 8057337874806992183898478061882, 8607002252619465665736907583406214288
Offset: 0
The tree of 4-tournament sequences of descendents
of a node labeled (2) begins:
[2]; generation 1: 2->[5,8]; generation 2:
5->[8,11,14,17,20], 8->[11,14,17,20,23,26,29,32]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^2)[n+1,1])}
A113106
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T.
Original entry on oeis.org
1, 1, 1, 5, 6, 1, 85, 115, 31, 1, 4985, 7420, 2590, 156, 1, 1082905, 1744965, 723370, 62090, 781, 1, 930005021, 1601759426, 752616215, 82390620, 1532715, 3906, 1, 3306859233805, 6024941167511, 3117415999361, 409321203715, 10025307495
Offset: 0
Triangle begins:
1;
1,1;
5,6,1;
85,115,31,1;
4985,7420,2590,156,1;
1082905,1744965,723370,62090,781,1;
930005021,1601759426,752616215,82390620,1532715,3906,1;
Matrix 4th power T^4 (A113112) begins:
1;
4,1;
56,24,1;
2704,1576,124,1;
481376,346624,39376,624,1; ...
where column 0 equals A113113.
Matrix 5th power T^5 (A113114) begins:
1;
5,1;
85,30,1;
4985,2435,155,1;
1082905,662060,61310,780,1;
930005021,671754405,80861810,1528810,3905,1; ...
where adjacent sums in row n of T^5 forms row n+1 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,k+1])}
A113084
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix third power of T.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 21, 33, 13, 1, 331, 586, 294, 40, 1, 11973, 23299, 13768, 2562, 121, 1, 1030091, 2166800, 1447573, 333070, 22569, 364, 1, 218626341, 490872957, 361327779, 97348117, 8466793, 200931, 1093, 1, 118038692523, 280082001078
Offset: 0
Triangle T begins:
1;
1,1;
3,4,1;
21,33,13,1;
331,586,294,40,1;
11973,23299,13768,2562,121,1;
1030091,2166800,1447573,333070,22569,364,1; ...
Matrix square T^2 (A113088) begins:
1;
2,1;
10,8,1;
114,118,26,1;
2970,3668,1108,80,1;
182402,257122,96416,9964,242,1; ...
where column 0 equals A113089.
Matrix cube T^3 (A113090) begins:
1;
3,1;
21,12,1;
331,255,39,1;
11973,11326,2442,120,1;
1030091,1136709,310864,22206,363,1; ...
where adjacent sums in row n of T^3 forms row n+1 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return(M[n+1,k+1])}
Showing 1-10 of 11 results.
Comments