cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A113088 Triangle T, read by rows, equal to the matrix square of triangle A113084, which satisfies the recurrence: A113084(n,k) = [A113084^3](n-1,k-1) + [A113084^3](n-1,k).

Original entry on oeis.org

1, 2, 1, 10, 8, 1, 114, 118, 26, 1, 2970, 3668, 1108, 80, 1, 182402, 257122, 96416, 9964, 242, 1, 27392682, 42821472, 18871894, 2501468, 89182, 728, 1, 10390564242, 17650889358, 8826033518, 1412198686, 65914154, 799714, 2186, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Examples

			Triangle begins:
1;
2,1;
10,8,1;
114,118,26,1;
2970,3668,1108,80,1;
182402,257122,96416,9964,242,1;
27392682,42821472,18871894,2501468,89182,728,1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return((M^2)[n+1,k+1])}

A113090 Triangle T, read by rows, equal to the matrix cube of triangle A113084, which satisfies the recurrence: A113084(n,k) = [A113084^3](n-1,k-1) + [A113084^3](n-1,k).

Original entry on oeis.org

1, 3, 1, 21, 12, 1, 331, 255, 39, 1, 11973, 11326, 2442, 120, 1, 1030091, 1136709, 310864, 22206, 363, 1, 218626341, 272246616, 89081163, 8266954, 199839, 1092, 1, 118038692523, 162043308555, 61099562421, 6923071251, 220482175, 1796349
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Examples

			Triangle begins:
1;
3,1;
21,12,1;
331,255,39,1;
11973,11326,2442,120,1;
1030091,1136709,310864,22206,363,1;
218626341,272246616,89081163,8266954,199839,1092,1; ...
		

Crossrefs

Cf. A113084, A113081, A113091 (column 1).

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return((M^3)[n+1,k+1])}

A113087 Row sums of triangle A113084, which satisfies the recurrence: A113084(n,k) = [A113084^3](n-1,k-1) + [A113084^3](n-1,k).

Original entry on oeis.org

1, 2, 8, 68, 1252, 51724, 5000468, 1176844012, 696653833108, 1063944196415276, 4273738134967763028, 45828521528368595280876, 1327368163105850592309345044, 104832927462400739554960944906668
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Crossrefs

Cf. A113084.

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return(sum(k=1,n+1,M[n+1,k]))}

A113082 Main diagonal of square table A113081; also, a(n) equals the n-th term in column 0 of the matrix n-th power of triangle A113084.

Original entry on oeis.org

1, 1, 10, 331, 33476, 10204145, 9378590446, 26026690264407, 218132378185337416, 5518274388618175447069, 421034872020570533423509010, 96809747319527667989371938562883
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n,q=3)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^n)[n+1,1])}

A113083 Diagonal of square table A113081; also, a(n) equals the n-th term in column 0 of the matrix (n+1)-th power of triangle A113084.

Original entry on oeis.org

1, 2, 21, 724, 75695, 23694838, 22239639177, 62747494950248, 532868670719193651, 13624738004791751175370, 1048678107774203901392276461, 242892250870416811233766661498812
Offset: 1

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n,q=3)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return(if(n<1,0,(M^n)[n,1]))}

A113086 Column 1 of triangle A113084, which satisfies the recurrence: A113084(n,k) = [A113084^3](n-1,k-1) + [A113084^3](n-1,k).

Original entry on oeis.org

1, 4, 33, 586, 23299, 2166800, 490872957, 280082001078, 412989850899863, 1604627387895595612, 16673986511766782602033, 468802076619022792385223170, 35999655498002937223238590342603
Offset: 1

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Crossrefs

Cf. A113084.

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return(if(n<1,0,M[n+1,2]))}

A113089 Number of 3-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 2) and t_{i+1} <= 3*t_i for 1

Original entry on oeis.org

1, 2, 10, 114, 2970, 182402, 27392682, 10390564242, 10210795262650, 26494519967902114, 184142934938620227530, 3466516611360924222460082, 178346559667060145108789818842, 25264074391478558474014952210052802
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Comments

Column 0 of triangle A113088; A113088 is the matrix square of triangle A113084, which satisfies the matrix recurrence: A113084(n,k) = [A113084^3](n-1,k-1) + [A113084^3](n-1,k). Also equals column 2 of square table A113081.

Examples

			The tree of 3-tournament sequences of even integer
descendents of a node labeled (2) begins:
[2]; generation 1: 2->[4,6];
generation 2: 4->[6,8,10,12], 6->[8,10,12,14,16,18]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return((M^2)[n+1,1])}

A113106 Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 85, 115, 31, 1, 4985, 7420, 2590, 156, 1, 1082905, 1744965, 723370, 62090, 781, 1, 930005021, 1601759426, 752616215, 82390620, 1532715, 3906, 1, 3306859233805, 6024941167511, 3117415999361, 409321203715, 10025307495
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Comments

Column 0 of the matrix power p, T^p, equals the number of 5-tournament sequences having initial term p (see A113103 for definitions).

Examples

			Triangle begins:
1;
1,1;
5,6,1;
85,115,31,1;
4985,7420,2590,156,1;
1082905,1744965,723370,62090,781,1;
930005021,1601759426,752616215,82390620,1532715,3906,1;
Matrix 4th power T^4 (A113112) begins:
1;
4,1;
56,24,1;
2704,1576,124,1;
481376,346624,39376,624,1; ...
where column 0 equals A113113.
Matrix 5th power T^5 (A113114) begins:
1;
5,1;
85,30,1;
4985,2435,155,1;
1082905,662060,61310,780,1;
930005021,671754405,80861810,1528810,3905,1; ...
where adjacent sums in row n of T^5 forms row n+1 of T.
		

Crossrefs

Cf. A097710, A113084, A113095; A113103, A113107 (column 0), A113108 (T^2), A113110 (T^3), A113112 (T^4), A113112 (T^5).

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,k+1])}

Formula

Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^5] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+4*j)] + x*y*GF[T^(5*p)].

A113095 Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^4](n-1,k-1) + [T^4](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^4 is the matrix 4th power of T.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 46, 66, 21, 1, 1504, 2398, 978, 85, 1, 146821, 255113, 122914, 14962, 341, 1, 45236404, 84425001, 46001193, 7046354, 235122, 1365, 1, 46002427696, 91159696960, 54661544301, 9933169553, 432627794, 3738738, 5461, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Comments

Column 0 of the matrix power p, T^p, equals the number of 4-tournament sequences having initial term p (see A113092 for definitions).

Examples

			Triangle T begins:
  1;
  1,1;
  4,5,1;
  46,66,21,1;
  1504,2398,978,85,1;
  146821,255113,122914,14962,341,1;
  45236404,84425001,46001193,7046354,235122,1365,1; ...
Matrix third power T^3 (A113099) begins:
  1;
  3,1;
  27,15,1;
  693,513,63,1;
  52812,47619,8289,255,1; ...
 where column 0 equals A113100.
Matrix 4th power T^4 (A113101) begins:
  1;
  4,1;
  46,20,1;
  1504,894,84,1;
  146821,108292,14622,340,1;
  45236404,39188597,6812596,233758,1364,1; ...
 where adjacent sums in row n of T^4 forms row n+1 of T.
		

Crossrefs

Cf. A097710, A113084, A113106; A113092, A113096 (column 0), A113097 (T^2), A113099 (T^3), A113101 (T^4).

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,k+1])}

Formula

Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^4] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+3*j)] + x*y*GF[T^(4*p)].

A113081 Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k), in the tree of 3-tournament sequences, for n>=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 21, 10, 3, 1, 0, 331, 114, 21, 4, 1, 0, 11973, 2970, 331, 36, 5, 1, 0, 1030091, 182402, 11973, 724, 55, 6, 1, 0, 218626341, 27392682, 1030091, 33476, 1345, 78, 7, 1, 0, 118038692523, 10390564242, 218626341, 3697844, 75695, 2246
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2005

Keywords

Comments

A 3-tournament sequence is an increasing sequence of positive integers (t_1,t_2,...) such that t_1 = p, t_i = p (mod 2) and t_{i+1} <= 3*t_i, where p>=1. This is the table of 3-tournament sequences when the starting node has label p = k for column k>=1.

Examples

			Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,3,10,21,36,55,78,105,136,171,210,...
0,21,114,331,724,1345,2246,3479,5096,7149,...
0,331,2970,11973,33476,75695,148926,265545,440008,...
0,11973,182402,1030091,3697844,10204145,23694838,...
0,1030091,27392682,218626341,1011973796,3416461455,...
0,218626341,10390564242,118038692523,706848765844,...
0,118038692523,10210795262650,166013096151621,...
		

Crossrefs

Cf. A113084, A113085 (column 1), A113089 (column 2); tables: A093729 (2-tournaments), A113092 (4-tournaments), A113103 (5-tournaments).

Programs

  • PARI
    /* Generalized Cook-Kleber Recurrence */ T(n,k,q=3)=if(n==0,1,if(n<0 || k<=0,0,if(n==1,k, if(n>=k,sum(j=1,k,T(n-1,k+(q-1)*j)), sum(j=1,n+1,(-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))
    
  • PARI
    /* Matrix Power Recurrence (Paul D. Hanna) */ T(n,k,q=3)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^k)[n+1,1])

Formula

For n>=k>0: T(n, k) = Sum_{j=1..k} T(n-1, k+2*j); else for k>n>0: T(n, k) = Sum_{j=1..n+1}(-1)^(j-1)*C(n+1, j)*T(n, k-j); with T(0, k)=1 for k>=0. Column k of T equals column 0 of the matrix k-th power of triangle A113084, which satisfies the matrix recurrence: A113084(n, k) = [A113084^3](n-1, k-1) + [A113084^3](n-1, k) for n>k>=0.
Showing 1-10 of 11 results. Next