A113108
Triangle T, read by rows, equal to the matrix square of triangle A113106, which satisfies the recurrence: A113106(n,k) = [A113106^5](n-1,k-1) + [A113106^5](n-1,k).
Original entry on oeis.org
1, 2, 1, 16, 12, 1, 440, 416, 62, 1, 43600, 48320, 10016, 312, 1, 16698560, 20765520, 5394320, 246016, 1562, 1, 26098464448, 35382716032, 10854556720, 646408320, 6116016, 7812, 1, 172513149018752, 250136469031744, 87213434633152
Offset: 0
Triangle begins:
1;
2,1;
16,12,1;
440,416,62,1;
43600,48320,10016,312,1;
16698560,20765520,5394320,246016,1562,1;
26098464448,35382716032,10854556720,646408320,6116016,7812,1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^2)[n+1,k+1])}
A113110
Triangle T, read by rows, equal to the matrix cube of triangle A113106, which satisfies the recurrence: A113106(n,k) = [A113106^5](n-1,k-1) + [A113106^5](n-1,k).
Original entry on oeis.org
1, 3, 1, 33, 18, 1, 1251, 903, 93, 1, 173505, 151716, 22278, 468, 1, 94216515, 94758285, 17789766, 551778, 2343, 1, 210576669921, 235461277878, 53137278735, 2167944516, 13749903, 11718, 1, 2002383115518243, 2432344424403219
Offset: 0
Triangle begins:
1;
3,1;
33,18,1;
1251,903,93,1;
173505,151716,22278,468,1;
94216515,94758285,17789766,551778,2343,1;
210576669921,235461277878,53137278735,2167944516,13749903,11718,1;
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^3)[n+1,k+1])}
A113112
Triangle T, read by rows, equal to the matrix 4th power of triangle A113106, which satisfies the recurrence: A113106(n,k) = [A113106^5](n-1,k-1) + [A113106^5](n-1,k).
Original entry on oeis.org
1, 4, 1, 56, 24, 1, 2704, 1576, 124, 1, 481376, 346624, 39376, 624, 1, 337587520, 284081376, 41686624, 979376, 3124, 1, 978162377600, 927672109184, 165184873376, 5122890624, 24434376, 15624, 1, 12088945462984960
Offset: 0
Triangle begins:
1;
4,1;
56,24,1;
2704,1576,124,1;
481376,346624,39376,624,1;
337587520,284081376,41686624,979376,3124,1;
978162377600,927672109184,165184873376,5122890624,24434376,15624,1;
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^4)[n+1,k+1])}
A113114
Triangle T, read by rows, equal to the matrix 5th power of triangle A113106, which satisfies the recurrence: A113106(n,k) = [A113106^5](n-1,k-1) + [A113106^5](n-1,k).
Original entry on oeis.org
1, 5, 1, 85, 30, 1, 4985, 2435, 155, 1, 1082905, 662060, 61310, 780, 1, 930005021, 671754405, 80861810, 1528810, 3905, 1, 3306859233805, 2718081933706, 399334065655, 9987138060, 38169435, 19530, 1, 50220281721033905
Offset: 0
Triangle begins:
1;
5,1;
85,30,1;
4985,2435,155,1;
1082905,662060,61310,780,1;
930005021,671754405,80861810,1528810,3905,1;
3306859233805,2718081933706,399334065655,9987138060,38169435,19530,1;
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^5)[n+1,k+1])}
A113104
Main diagonal of square table A113103; also, a(n) equals the n-th term in column 0 of the matrix n-th power of triangle A113106.
Original entry on oeis.org
1, 1, 16, 1251, 481376, 930005021, 9082872004032, 448356882751890343, 111655372144044770735104, 140027604270897805074354921849, 883117855371077265832943940474315776
Offset: 0
-
{a(n,q=5)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^n)[n+1,1])}
A113105
Diagonal of square table A113103; also, a(n) equals the n-th term in column 0 of the matrix (n+1)-th power of triangle A113106.
Original entry on oeis.org
1, 2, 33, 2704, 1082905, 2156566656, 21543117605345, 1081795451307347456, 273019500242348456497329, 346065491936438505902218920448, 2201645604139293737199292995777020545
Offset: 0
-
{a(n,q=5)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return(if(n<1,0,(M^n)[n,1]))}
A113113
Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 4 and t_i = 4 (mod 4) and t_{i+1} <= 5*t_i for 1
Original entry on oeis.org
1, 4, 56, 2704, 481376, 337587520, 978162377600, 12088945462984960, 651451173346940188160, 155573037664478034394215424, 166729581953452524706695313356800
Offset: 0
The tree of 5-tournament sequences of descendents
of a node labeled (4) begins:
[4]; generation 1: 4->[8,12,16,20];
generation 2: 8->[12,16,20,24,28,32,36,40],
12->[16,20,24,28,32,36,40,44,48,52,56,60],
16->[20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80],
20->[24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100];
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^4)[n+1,1])}
A113107
Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 4) and t_{i+1} <= 5*t_i for 1
Original entry on oeis.org
1, 1, 5, 85, 4985, 1082905, 930005021, 3306859233805, 50220281721033905, 3328966349792343354865, 978820270264589718999911669, 1292724512951963810375572954693765
Offset: 0
The tree of 5-tournament sequences of descendents
of a node labeled (1) begins:
[1]; generation 1: 1->[5]; generation 2: 5->[9,13,17,21,25]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113100,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,1])}
A113084
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix third power of T.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 21, 33, 13, 1, 331, 586, 294, 40, 1, 11973, 23299, 13768, 2562, 121, 1, 1030091, 2166800, 1447573, 333070, 22569, 364, 1, 218626341, 490872957, 361327779, 97348117, 8466793, 200931, 1093, 1, 118038692523, 280082001078
Offset: 0
Triangle T begins:
1;
1,1;
3,4,1;
21,33,13,1;
331,586,294,40,1;
11973,23299,13768,2562,121,1;
1030091,2166800,1447573,333070,22569,364,1; ...
Matrix square T^2 (A113088) begins:
1;
2,1;
10,8,1;
114,118,26,1;
2970,3668,1108,80,1;
182402,257122,96416,9964,242,1; ...
where column 0 equals A113089.
Matrix cube T^3 (A113090) begins:
1;
3,1;
21,12,1;
331,255,39,1;
11973,11326,2442,120,1;
1030091,1136709,310864,22206,363,1; ...
where adjacent sums in row n of T^3 forms row n+1 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return(M[n+1,k+1])}
A113095
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^4](n-1,k-1) + [T^4](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^4 is the matrix 4th power of T.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 46, 66, 21, 1, 1504, 2398, 978, 85, 1, 146821, 255113, 122914, 14962, 341, 1, 45236404, 84425001, 46001193, 7046354, 235122, 1365, 1, 46002427696, 91159696960, 54661544301, 9933169553, 432627794, 3738738, 5461, 1
Offset: 0
Triangle T begins:
1;
1,1;
4,5,1;
46,66,21,1;
1504,2398,978,85,1;
146821,255113,122914,14962,341,1;
45236404,84425001,46001193,7046354,235122,1365,1; ...
Matrix third power T^3 (A113099) begins:
1;
3,1;
27,15,1;
693,513,63,1;
52812,47619,8289,255,1; ...
where column 0 equals A113100.
Matrix 4th power T^4 (A113101) begins:
1;
4,1;
46,20,1;
1504,894,84,1;
146821,108292,14622,340,1;
45236404,39188597,6812596,233758,1364,1; ...
where adjacent sums in row n of T^4 forms row n+1 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,k+1])}
Showing 1-10 of 13 results.
Comments