A113089
Number of 3-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 2) and t_{i+1} <= 3*t_i for 1
Original entry on oeis.org
1, 2, 10, 114, 2970, 182402, 27392682, 10390564242, 10210795262650, 26494519967902114, 184142934938620227530, 3466516611360924222460082, 178346559667060145108789818842, 25264074391478558474014952210052802
Offset: 0
The tree of 3-tournament sequences of even integer
descendents of a node labeled (2) begins:
[2]; generation 1: 2->[4,6];
generation 2: 4->[6,8,10,12], 6->[8,10,12,14,16,18]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^3)[r-1,c-1])+(M^3)[r-1,c]))); return((M^2)[n+1,1])}
A113100
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 3 and t_i = 3 (mod 3) and t_{i+1} <= 4*t_i for 1
Original entry on oeis.org
1, 3, 27, 693, 52812, 12628008, 9924266772, 26507035453923, 246323730279500082, 8100479557816637139288, 954983717308947379891713642, 407790020849346203244152231395953
Offset: 0
The tree of 4-tournament sequences of descendents of a node labeled (3) begins:
[3]; generation 1: 3->[6,9,12]; generation 2:
6->[9,12,15,18,21,24], 9->[12,15,18,21,24,27,30,33,36],
12->[15,18,21,24,27,30,33,36,39,42,45,48]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^3)[n+1,1])}
A113096
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 3) and t_{i+1} <= 4*t_i for 1
Original entry on oeis.org
1, 1, 4, 46, 1504, 146821, 45236404, 46002427696, 159443238441379, 1926751765436372746, 82540801108546193896804, 12696517688186899788062326096, 7084402815778394692932546017050054
Offset: 0
The tree of 4-tournament sequences of descendents
of a node labeled (1) begins:
[1]; generation 1: 1->[4]; generation 2: 4->[7,10,13,16];
generation 3: 7->[10,13,16,19,22,25,28],
10->[13,16,19,22,25,28,31,34,37,40],
13->[16,19,22,25,28,31,34,37,40,43,46,49,52],
16->[19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,1])}
A113098
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 3) and t_{i+1} <= 4*t_i for 1
Original entry on oeis.org
1, 2, 13, 242, 13228, 2241527, 1237069018, 2305369985312, 14874520949557933, 338242806223319079422, 27474512329417917714396073, 8057337874806992183898478061882, 8607002252619465665736907583406214288
Offset: 0
The tree of 4-tournament sequences of descendents
of a node labeled (2) begins:
[2]; generation 1: 2->[5,8]; generation 2:
5->[8,11,14,17,20], 8->[11,14,17,20,23,26,29,32]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^2)[n+1,1])}
A113106
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T.
Original entry on oeis.org
1, 1, 1, 5, 6, 1, 85, 115, 31, 1, 4985, 7420, 2590, 156, 1, 1082905, 1744965, 723370, 62090, 781, 1, 930005021, 1601759426, 752616215, 82390620, 1532715, 3906, 1, 3306859233805, 6024941167511, 3117415999361, 409321203715, 10025307495
Offset: 0
Triangle begins:
1;
1,1;
5,6,1;
85,115,31,1;
4985,7420,2590,156,1;
1082905,1744965,723370,62090,781,1;
930005021,1601759426,752616215,82390620,1532715,3906,1;
Matrix 4th power T^4 (A113112) begins:
1;
4,1;
56,24,1;
2704,1576,124,1;
481376,346624,39376,624,1; ...
where column 0 equals A113113.
Matrix 5th power T^5 (A113114) begins:
1;
5,1;
85,30,1;
4985,2435,155,1;
1082905,662060,61310,780,1;
930005021,671754405,80861810,1528810,3905,1; ...
where adjacent sums in row n of T^5 forms row n+1 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,k+1])}
A113107
Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 4) and t_{i+1} <= 5*t_i for 1
Original entry on oeis.org
1, 1, 5, 85, 4985, 1082905, 930005021, 3306859233805, 50220281721033905, 3328966349792343354865, 978820270264589718999911669, 1292724512951963810375572954693765
Offset: 0
The tree of 5-tournament sequences of descendents
of a node labeled (1) begins:
[1]; generation 1: 1->[5]; generation 2: 5->[9,13,17,21,25]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113100,
A113109,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,1])}
A113078
Number of tournament sequences: a(n) gives the number of n-th generation descendents of a node labeled (4) in the tree of tournament sequences.
Original entry on oeis.org
1, 4, 26, 274, 4721, 134899, 6501536, 537766009, 77598500096, 19821981700354, 9077118324755246, 7531446638893873684, 11423775838657143826346, 31914367054676982206368909, 165251261153335414813452988541
Offset: 0
The tree of tournament sequences of descendents of a node labeled (4) begins:
[4]; generation 1: 4->[5,6,7,8]; generation 2: 5->[6,7,8,9,10],
6->[7,8,9,10,11,12], 7->[8,9,10,11,12,13,14],
8->[9,10,11,12,13,14,15,16]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A113077,
A113079,
A008934,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n,q=2)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^4)[n+1,1])}
A113079
Number of tournament sequences: a(n) gives the number of n-th generation descendents of a node labeled (5) in the tree of tournament sequences.
Original entry on oeis.org
1, 5, 40, 515, 10810, 376175, 22099885, 2231417165, 393643922005, 123097221805100, 69087264010363930, 70321483026073531730, 130954011392485408662370, 449450774746306949114288795
Offset: 0
The tree of tournament sequences of descendents of a node labeled (5) begins:
[5]; generation 1: 5->[6,7,8,9,10]; generation 2:
6->[7,8,9,10,11,12], 7->[8,9,10,11,12,13,14],
8->[9,10,11,12,13,14,15,16], 9->[10,11,12,13,14,15,16,17,18],
10->[11,12,13,14,15,16,17,18,19,20]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A113077,
A113078,
A008934,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n,q=2)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^5)[n+1,1])}
A113109
Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 4) and t_{i+1} <= 5*t_i for 1
Original entry on oeis.org
1, 2, 16, 440, 43600, 16698560, 26098464448, 172513149018752, 4938593053649344000, 622793203804403960906240, 350552003258337075784341271552, 890153650520295355798989668668129280
Offset: 0
The tree of 5-tournament sequences of descendents
of a node labeled (2) begins:
[2]; generation 1: 2->[6,10]; generation 2:
6->[10,14,18,22,26,30], 10->[14,18,22,26,30,34,38,42,46,50]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113100,
A113107,
A113111,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^2)[n+1,1])}
A113111
Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 3 and t_i = 3 (mod 4) and t_{i+1} <= 5*t_i for 1
Original entry on oeis.org
1, 3, 33, 1251, 173505, 94216515, 210576669921, 2002383115518243, 82856383278525698433, 15166287556997012904054915, 12437232461209961704387810340769
Offset: 0
The tree of 5-tournament sequences of descendents
of a node labeled (3) begins:
[3]; generation 1: 3->[7,11,15];
generation 2: 7->[11,15,19,23,27,31,35],
11->[15,19,23,27,31,35,39,43,47,51,55],
15->[19,23,27,31,35,39,43,47,51,55,59,63,67,71,75]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A008934,
A113077,
A113078,
A113079,
A113085,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113113.
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^3)[n+1,1])}
Showing 1-10 of 13 results.
Comments