Original entry on oeis.org
1, 20, 894, 108292, 39188597, 45157269264, 172969059719500, 2268555493366383236, 104065414379018585400528, 16965802042440759287849083708, 9953305892540385313201626908460431
Offset: 1
-
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(if(n<1,0,(M^4)[n+1,2]))}
A113095
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^4](n-1,k-1) + [T^4](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^4 is the matrix 4th power of T.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 46, 66, 21, 1, 1504, 2398, 978, 85, 1, 146821, 255113, 122914, 14962, 341, 1, 45236404, 84425001, 46001193, 7046354, 235122, 1365, 1, 46002427696, 91159696960, 54661544301, 9933169553, 432627794, 3738738, 5461, 1
Offset: 0
Triangle T begins:
1;
1,1;
4,5,1;
46,66,21,1;
1504,2398,978,85,1;
146821,255113,122914,14962,341,1;
45236404,84425001,46001193,7046354,235122,1365,1; ...
Matrix third power T^3 (A113099) begins:
1;
3,1;
27,15,1;
693,513,63,1;
52812,47619,8289,255,1; ...
where column 0 equals A113100.
Matrix 4th power T^4 (A113101) begins:
1;
4,1;
46,20,1;
1504,894,84,1;
146821,108292,14622,340,1;
45236404,39188597,6812596,233758,1364,1; ...
where adjacent sums in row n of T^4 forms row n+1 of T.
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return(M[n+1,k+1])}
A113099
Triangle T, read by rows, equal to the matrix cube of triangle A113095, which satisfies the recurrence: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).
Original entry on oeis.org
1, 3, 1, 27, 15, 1, 693, 513, 63, 1, 52812, 47619, 8289, 255, 1, 12628008, 13176189, 2920527, 131841, 1023, 1, 9924266772, 11586274263, 3078907929, 181929087, 2101761, 4095, 1, 26507035453923, 33825995695125, 10365262415703
Offset: 0
Triangle begins:
1;
3,1;
27,15,1;
693,513,63,1;
52812,47619,8289,255,1;
12628008,13176189,2920527,131841,1023,1;
9924266772,11586274263,3078907929,181929087,2101761,4095,1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^3)[n+1,k+1])}
Showing 1-3 of 3 results.
Comments