A113113 Number of 5-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 4 and t_i = 4 (mod 4) and t_{i+1} <= 5*t_i for 1
1, 4, 56, 2704, 481376, 337587520, 978162377600, 12088945462984960, 651451173346940188160, 155573037664478034394215424, 166729581953452524706695313356800
Offset: 0
Keywords
Examples
The tree of 5-tournament sequences of descendents of a node labeled (4) begins: [4]; generation 1: 4->[8,12,16,20]; generation 2: 8->[12,16,20,24,28,32,36,40], 12->[16,20,24,28,32,36,40,44,48,52,56,60], 16->[20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80], 20->[24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100]; Then a(n) gives the number of nodes in generation n. Also, a(n+1) = sum of labels of nodes in generation n.
Links
- T. D. Noe, Table of n, a(n) for n=0..30
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Crossrefs
Programs
-
PARI
{a(n)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return((M^4)[n+1,1])}
Comments