A113129 Triangle T(n,k), 0<=k<=n, of coefficients of polynomials P_n(x) related to convolution of the k-fold factorials.
1, 0, 1, 0, 0, 2, 0, 0, 1, 6, 0, 0, 0, 10, 24, 0, 0, 0, 4, 82, 120, 0, 0, 0, 0, 84, 672, 720, 0, 0, 0, 0, 27, 1236, 5820, 5040, 0, 0, 0, 0, 0, 930, 16328, 54288, 40320, 0, 0, 0, 0, 0, 248, 20850, 211080, 548496, 362880, 0, 0, 0, 0, 0, 0, 12452, 396528, 2775432
Offset: 0
Examples
Triangle begins: .1; .0, 1; .0, 0, 2; .0, 0, 1, 6; .0, 0, 0, 10, 24; .0, 0, 0, 4, 82, 120; .0, 0, 0, 0, 84, 672, 720; .0, 0, 0, 0, 27, 1236, 5820, 5040; .0, 0, 0, 0, 0, 930, 16328, 54288, 40320; .0, 0, 0, 0, 0, 248, 20850, 211080, 548496, 362880; .0, 0, 0, 0, 0, 0, 12452, 396528, 2775432, 6003360, 362880; .0, 0, 0, 0, 0, 0, 2830, 38732, 7057308, 37831752, 71019360, 39916800;
Crossrefs
Formula
P_0(x) = 1, P_1(x) = x, P_2(x) = 2*x^2, P_ n(x) = n*x*P_(n-1)(x) + Sum_{j, 1<=j<=n-1} j*P_j(x)*P_(n-1-j)(x).
P_n(x) = Sum_{k, 0<=k<=n} T(n, k)*x^k.
P_n(0) = A000007(n).
P_n(x) = A075834(n+1), A111088(n+1), A113130(n+1), A113131(n+1), A113132(n+1), A113133(n+1), A113134(n+1), A113135(n+1) for x = 1, 2, 3, 4, 5, 6, 7, 8 respectively.
P_n(-1) = (-1)^n*A000108(n), signed Catalan numbers.
T(n, n) = n! = A000142(n).
T(2*n+1, n+1) = A000699(n+1) (number of irreducible diagrams with 2n+2 nodes).
Extensions
Corrected by Philippe Deléham, Dec 18 2008
Comments