A113332
a(n) = A113129(2*n+2,n+2) for n>=0.
Original entry on oeis.org
2, 10, 84, 930, 12452, 193284, 3393480, 66310914, 1425717060, 33435425100, 849342514200, 23235509430900, 681196753501992, 21309727555222600, 708630046700665104, 24964702239372310338, 928914855447585334020
Offset: 0
Original entry on oeis.org
1, 1, 3, 20, 217, 3206, 59000, 1288184, 32391811, 919625298, 29062669744, 1011423361344, 38432306102230, 1583371370586372, 70311532983998416, 3348279599587251984, 170232740676793931347, 9204327574128495048866
Offset: 0
A113134
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 7.
Original entry on oeis.org
1, 1, 7, 98, 2107, 61054, 2215094, 96203268, 4856212179, 279081882086, 17981777803682, 1283631249683804, 100557420457355358, 8577121056958121836, 791318123914138366924, 78521346319092948749576
Offset: 0
a(2) = 7.
a(3) = 2*7^2 = 98.
a(4) = 7*3*98 + 1*7*7 = 2107.
a(5) = 7*4*2107 + 1*7*98 + 2*98*7 = 61054.
a(6) = 7*5*61054 + 1*7*2107 + 2*98*98 + 3*2107*7 = 2215094.
G.f.: A(x) = 1 + x + 7*x^2 + 98*x^3 + 2107*x^4 + 61054*x^5
+...
= x/series_reversion(x + x^2 + 8*x^3 + 120*x^4 + 2640*x^5
+...).
-
x=7;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 16}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,7*j+1))))))[n+1]
-
a(n,x=7)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113135
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 8.
Original entry on oeis.org
1, 1, 8, 128, 3136, 103424, 4270080, 211107840, 12135936000, 794618298368, 58355305676800, 4749550536359936, 424336070117163008, 41287521140173963264, 4346005245162898325504, 492102089936714946576384
Offset: 0
a(2) = 8.
a(3) = 2*8^2 = 128.
a(4) = 8*3*128 + 1*8*8 = 3136.
a(5) = 8*4*3136 + 1*8*128 + 2*128*8 = 103424.
a(6) = 8*5*103424 + 1*8*3136 + 2*128*128 + 3*3136*8 = 4270080
G.f.: A(x) = 1 + x + 8*x^2 + 128*x^3 + 3136*x^4 + 103424*x^5 +...
= x/series_reversion(x + x^2 + 9*x^3 + 153*x^4 + 3825*x^5 +...).
-
x=8;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 16}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,8*j+1))))))[n+1]
-
a(n,x=8)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113130
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 3.
Original entry on oeis.org
1, 1, 3, 18, 171, 2214, 35910, 694980, 15567795, 395396478, 11218141170, 351527039676, 12056563337598, 449255267318844, 18074052522890604, 780881956274215944, 36062953309417344579, 1772992806860541951342
Offset: 0
a(2) = 3.
a(3) = 2*3^2 = 18.
a(4) = 3*3*18 + 1*3*3 = 171.
a(5) = 3*4*171 + 1*3*18 + 2*18*3 = 2214.
a(6) = 3*5*2214 + 1*3*171 + 2*18*18 + 3*171*3 = 35910.
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 171*x^4 + 2214*x^5 +...
= x/series_reversion(x + x^2 + 4*x^3 + 28*x^4 + 280*x^5 +...).
-
x=3;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 18}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,3*j+1))))))[n+1]
-
{a(n,x=3)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,
x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))}
A113131
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 4.
Original entry on oeis.org
1, 1, 4, 32, 400, 6784, 144128, 3658752, 107686656, 3599697920, 134617038848, 5567255822336, 252278661832704, 12431395516383232, 661885541595873280, 37869659304097218560, 2317293119684500193280, 151022143036329696952320
Offset: 0
a(2) = 4.
a(3) = 2*4^2 = 32.
a(4) = 4*3*32 + 1*4*4 = 400.
a(5) = 4*4*400 + 1*4*32 + 2*32*4 = 6784.
a(6) = 4*5*6784 + 1*4*400 + 2*32*32 + 3*400*4 = 144128.
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 400*x^4 + 6784*x^5 +...
= x/series_reversion(x + x^2 + 5*x^3 + 45*x^4 + 585*x^5 +...).
-
x=4;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 18}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,4*j+1))))))[n+1]
-
a(n,x=4)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113132
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 5.
Original entry on oeis.org
1, 1, 5, 50, 775, 16250, 426750, 13402500, 488566875, 20249281250, 939823431250, 48278138937500, 2719288331093750, 166652371531562500, 11040797013538437500, 786338134640203125000, 59916445436152444921875
Offset: 0
a(2) = 5.
a(3) = 2*5^2 = 50.
a(4) = 5*3*50 + 1*5*5 = 775.
a(5) = 5*4*775 + 1*5*50 + 2*50*5 = 16250.
a(6) = 5*5*16250 + 1*5*775 + 2*50*50 + 3*775*5 = 426750.
G.f.: A(x) = 1 + x + 5*x^2 + 50*x^3 + 775*x^4 + 16250*x^5 +...
= x/series_reversion(x + x^2 + 6*x^3 + 66*x^4 + 1056*x^5
+...).
-
x=5;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 17}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,5*j+1))))))[n+1]
-
a(n,x=5)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113133
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 6.
Original entry on oeis.org
1, 1, 6, 72, 1332, 33264, 1040256, 38926656, 1692061488, 83688313536, 4638320578944, 284692939944192, 19169186341398912, 1404935464314299904, 111348880778746460160, 9489756817594314049536, 865470841829802331976448
Offset: 0
a(2) = 6.
a(3) = 2*6^2 = 72.
a(4) = 6*3*72 + 1*6*6 = 1332.
a(5) = 6*4*1332 + 1*6*72 + 2*72*6 = 33264.
a(6) = 6*5*33264 + 1*6*1332 + 2*72*72 + 3*1332*6 = 1040256.
G.f.: A(x) = 1 + x + 6*x^2 + 72*x^3 + 1332*x^4 + 33264*x^5
+...
= x/series_reversion(x + x^2 + 7*x^3 + 91*x^4 + 1729*x^5
+...).
-
x=6;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 17}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,6*j+1))))))[n+1]
-
a(n,x=6)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
Showing 1-8 of 8 results.
Comments