A113129
Triangle T(n,k), 0<=k<=n, of coefficients of polynomials P_n(x) related to convolution of the k-fold factorials.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 6, 0, 0, 0, 10, 24, 0, 0, 0, 4, 82, 120, 0, 0, 0, 0, 84, 672, 720, 0, 0, 0, 0, 27, 1236, 5820, 5040, 0, 0, 0, 0, 0, 930, 16328, 54288, 40320, 0, 0, 0, 0, 0, 248, 20850, 211080, 548496, 362880, 0, 0, 0, 0, 0, 0, 12452, 396528, 2775432
Offset: 0
Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 6;
.0, 0, 0, 10, 24;
.0, 0, 0, 4, 82, 120;
.0, 0, 0, 0, 84, 672, 720;
.0, 0, 0, 0, 27, 1236, 5820, 5040;
.0, 0, 0, 0, 0, 930, 16328, 54288, 40320;
.0, 0, 0, 0, 0, 248, 20850, 211080, 548496, 362880;
.0, 0, 0, 0, 0, 0, 12452, 396528, 2775432, 6003360, 362880;
.0, 0, 0, 0, 0, 0, 2830, 38732, 7057308, 37831752, 71019360, 39916800;
A113134
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 7.
Original entry on oeis.org
1, 1, 7, 98, 2107, 61054, 2215094, 96203268, 4856212179, 279081882086, 17981777803682, 1283631249683804, 100557420457355358, 8577121056958121836, 791318123914138366924, 78521346319092948749576
Offset: 0
a(2) = 7.
a(3) = 2*7^2 = 98.
a(4) = 7*3*98 + 1*7*7 = 2107.
a(5) = 7*4*2107 + 1*7*98 + 2*98*7 = 61054.
a(6) = 7*5*61054 + 1*7*2107 + 2*98*98 + 3*2107*7 = 2215094.
G.f.: A(x) = 1 + x + 7*x^2 + 98*x^3 + 2107*x^4 + 61054*x^5
+...
= x/series_reversion(x + x^2 + 8*x^3 + 120*x^4 + 2640*x^5
+...).
-
x=7;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 16}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,7*j+1))))))[n+1]
-
a(n,x=7)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113135
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 8.
Original entry on oeis.org
1, 1, 8, 128, 3136, 103424, 4270080, 211107840, 12135936000, 794618298368, 58355305676800, 4749550536359936, 424336070117163008, 41287521140173963264, 4346005245162898325504, 492102089936714946576384
Offset: 0
a(2) = 8.
a(3) = 2*8^2 = 128.
a(4) = 8*3*128 + 1*8*8 = 3136.
a(5) = 8*4*3136 + 1*8*128 + 2*128*8 = 103424.
a(6) = 8*5*103424 + 1*8*3136 + 2*128*128 + 3*3136*8 = 4270080
G.f.: A(x) = 1 + x + 8*x^2 + 128*x^3 + 3136*x^4 + 103424*x^5 +...
= x/series_reversion(x + x^2 + 9*x^3 + 153*x^4 + 3825*x^5 +...).
-
x=8;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 16}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,8*j+1))))))[n+1]
-
a(n,x=8)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113130
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 3.
Original entry on oeis.org
1, 1, 3, 18, 171, 2214, 35910, 694980, 15567795, 395396478, 11218141170, 351527039676, 12056563337598, 449255267318844, 18074052522890604, 780881956274215944, 36062953309417344579, 1772992806860541951342
Offset: 0
a(2) = 3.
a(3) = 2*3^2 = 18.
a(4) = 3*3*18 + 1*3*3 = 171.
a(5) = 3*4*171 + 1*3*18 + 2*18*3 = 2214.
a(6) = 3*5*2214 + 1*3*171 + 2*18*18 + 3*171*3 = 35910.
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 171*x^4 + 2214*x^5 +...
= x/series_reversion(x + x^2 + 4*x^3 + 28*x^4 + 280*x^5 +...).
-
x=3;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 18}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,3*j+1))))))[n+1]
-
{a(n,x=3)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,
x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))}
A113131
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 4.
Original entry on oeis.org
1, 1, 4, 32, 400, 6784, 144128, 3658752, 107686656, 3599697920, 134617038848, 5567255822336, 252278661832704, 12431395516383232, 661885541595873280, 37869659304097218560, 2317293119684500193280, 151022143036329696952320
Offset: 0
a(2) = 4.
a(3) = 2*4^2 = 32.
a(4) = 4*3*32 + 1*4*4 = 400.
a(5) = 4*4*400 + 1*4*32 + 2*32*4 = 6784.
a(6) = 4*5*6784 + 1*4*400 + 2*32*32 + 3*400*4 = 144128.
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 400*x^4 + 6784*x^5 +...
= x/series_reversion(x + x^2 + 5*x^3 + 45*x^4 + 585*x^5 +...).
-
x=4;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 18}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,4*j+1))))))[n+1]
-
a(n,x=4)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A113132
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 5.
Original entry on oeis.org
1, 1, 5, 50, 775, 16250, 426750, 13402500, 488566875, 20249281250, 939823431250, 48278138937500, 2719288331093750, 166652371531562500, 11040797013538437500, 786338134640203125000, 59916445436152444921875
Offset: 0
a(2) = 5.
a(3) = 2*5^2 = 50.
a(4) = 5*3*50 + 1*5*5 = 775.
a(5) = 5*4*775 + 1*5*50 + 2*50*5 = 16250.
a(6) = 5*5*16250 + 1*5*775 + 2*50*50 + 3*775*5 = 426750.
G.f.: A(x) = 1 + x + 5*x^2 + 50*x^3 + 775*x^4 + 16250*x^5 +...
= x/series_reversion(x + x^2 + 6*x^3 + 66*x^4 + 1056*x^5
+...).
-
x=5;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 17}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,5*j+1))))))[n+1]
-
a(n,x=5)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
Showing 1-6 of 6 results.
Comments