cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113183 Number of unrooted two-face maps in the plane (considered up to orientation-preserving homeomorphism) with the faces of equal degree n: planar maps with a distinguished outside face.

Original entry on oeis.org

1, 1, 2, 3, 8, 18, 58, 155, 546, 1592, 5774, 17798, 65676, 210362, 785248, 2588155, 9743348, 32832290, 124416022, 426685544, 1625465732, 5654938190, 21636274202, 76171463926, 292498386900, 1040120036300, 4006388161846, 14369121494126
Offset: 1

Views

Author

Valery A. Liskovets, Oct 19 2005

Keywords

Examples

			There exist 2 maps in the plane with two triangular faces: a triangle and a map consisting of a 2-path and a loop in its middle vertex that separates both ends. Therefore a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[n/# - 1, Floor[n/(2*#)]]^2 &] / n; Array[a, 30] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    a(n) = sumdiv(n, k, eulerphi(k)*binomial(n/k - 1, n\(2*k))^2)/n; \\ Michel Marcus, Oct 14 2015

Formula

a(n) = (1/n) Sum_{k|n} phi(k) C((n/k)-1,floor(n/(2k)))^2 where phi(k) is the Euler function A000010.