A113183 Number of unrooted two-face maps in the plane (considered up to orientation-preserving homeomorphism) with the faces of equal degree n: planar maps with a distinguished outside face.
1, 1, 2, 3, 8, 18, 58, 155, 546, 1592, 5774, 17798, 65676, 210362, 785248, 2588155, 9743348, 32832290, 124416022, 426685544, 1625465732, 5654938190, 21636274202, 76171463926, 292498386900, 1040120036300, 4006388161846, 14369121494126
Offset: 1
Keywords
Examples
There exist 2 maps in the plane with two triangular faces: a triangle and a map consisting of a 2-path and a loop in its middle vertex that separates both ends. Therefore a(3) = 2.
Links
- M. Bousquet, G. Labelle and P. Leroux, Enumeration of planar two-face maps, Discrete Math., vol. 222 (2000), 1-25.
Programs
-
Mathematica
a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[n/# - 1, Floor[n/(2*#)]]^2 &] / n; Array[a, 30] (* Amiram Eldar, Aug 24 2023 *)
-
PARI
a(n) = sumdiv(n, k, eulerphi(k)*binomial(n/k - 1, n\(2*k))^2)/n; \\ Michel Marcus, Oct 14 2015
Formula
a(n) = (1/n) Sum_{k|n} phi(k) C((n/k)-1,floor(n/(2k)))^2 where phi(k) is the Euler function A000010.