cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A138483 Expansion of (phi(q)^3 * phi(q^5) - phi(q) * phi(q^5)^3) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 2, 1, 5, 6, 6, 7, 7, 15, 12, 2, 12, 18, 10, 9, 16, 21, 20, 5, 12, 36, 22, 14, 25, 36, 20, 6, 30, 30, 32, 23, 24, 48, 30, 7, 36, 60, 24, 35, 42, 36, 42, 12, 35, 66, 46, 18, 43, 75, 32, 12, 52, 60, 60, 42, 40, 90, 60, 10, 62, 96, 42, 41, 60, 72, 66, 16, 44
Offset: 1

Views

Author

Michael Somos, Mar 20 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 3*q^2 + 2*q^3 + q^4 + 5*q^5 + 6*q^6 + 6*q^7 + 7*q^8 + 7*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, n/# KroneckerSymbol[ 25, #] (-1)^Quotient[# + 2, 5] If[ Mod[#, 4] > 0, 1, 5] &]]; (* Michael Somos, Sep 27 2015 *)
    a[ n_] := SeriesCoefficient[ q EllipticTheta[3, 0, q] QPochhammer[ -q, q^2] QPochhammer[ -q^5] QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^3 EllipticTheta[3, 0, q^5] - EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^5]^3) / 4, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, n/d * kronecker(25, d) * (-1)^((d+2) \ 5) * if(d%4, 1, 5)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (2^(e+1) - 5*(-1)^e) / 3, f = kronecker(5, p); (p^(e+1) - f^(e+1)) / (p - f) )))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^10 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};

Formula

Expansion of q * phi(q) * chi(q) * f(q^5) * f(-q^10)^2 in powers of q where phi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^7 * eta(q^10)^5 / (eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [3, -4, 3, -1, 4, -4, 3, -1, 3, -8, 3, -1, 3, -4, 4, -1, 3, -4, 3, -4, ...].
a(n) is multiplicative with a(2^e) = (2^(e+1) - 5*(-1)^e) / 3 if e>0, a(5^e) = 5^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 80^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113185.
G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 + x^(2*k-1))^3 * (1 - x^(5*k))^3 * (1 + x^(10*k-5))^4 * (1 + x^(10*k))^3.
a(n) = -(-1)^n * A110712(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^2/(5*sqrt(5)) = 0.882764... . - Amiram Eldar, Nov 24 2023

A132069 Expansion of eta(q) * eta(q^2)^2 * eta(q^5)^3 / eta(q^10)^2 in powers of q.

Original entry on oeis.org

1, -1, -3, 2, 1, -1, 6, 6, -7, -7, -3, -12, -2, 12, 18, 2, 9, 16, -21, -20, 1, -12, -36, 22, 14, -1, 36, 20, -6, -30, 6, -32, -23, 24, 48, 6, 7, 36, -60, -24, -7, -42, -36, 42, 12, -7, 66, 46, -18, -43, -3, -32, -12, 52, 60, -12, 42, 40, -90, -60, -2, -62, -96, 42, 41, 12, 72, 66, -16, -44, 18, -72, -49, 72, 108, 2, 20, 72
Offset: 0

Views

Author

Michael Somos, Aug 08 2007, Mar 20 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by z(q) = q d/dq log k(q) in Cooper (2009) where k() is the g.f. of A112274. - Michael Somos, Jul 08 2012

Examples

			G.f. = 1 - q - 3*q^2 + 2*q^3 + q^4 - q^5 + 6*q^6 + 6*q^7 - 7*q^8 - 7*q^9 +...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 253 Eq. (8.12)

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ 5, #] # (-1)^# &]]; (* Michael Somos, Aug 26 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^2]^2 QPochhammer[ q^5]^3 / QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^5]^3 - EllipticTheta[ 4, 0, q]^3 EllipticTheta[ 4, 0, q^5])/4, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker(5, d) * d * (-1)^d))};
    
  • PARI
    {a(n) = my(A, p, e, a1); if( n<1, n==0, A = factor(n); -prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p>2, p *= kronecker(5, p); (p^(e+1) - 1) / (p - 1), (5 + (-2)^(e+1)) / 3)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^2 * eta(x^5 + A)^3 / eta(x^10 + A)^2, n))};

Formula

Expansion of (5 * phi(-q) * phi(-q^5)^3 - phi(-q)^3 * phi(-q^5)) / 4 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 10 sequence [-1, -3, -1, -3, -4, -3, -1, -3, -1, -4, ...].
a(n) = -b(n) where b() is multiplicative with b(5^e) = 1, b(2^e) = 2 - ((-2)^(e+1) - 1) / (-2 - 1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), b(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 7 (mod 10).
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k))^2 * (1 - x^(5*k)) / (1 + x^(5*k))^2.
G.f.: 1 + Sum_{k>0} (-1)^k * k * x^k / (1 - x^k) * Kronecker(5, k).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 2000^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A129303.
a(n) = (-1)^n * A113185(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(12*sqrt(5)) = 0.367818... . - Amiram Eldar, Jan 28 2024

A259030 a(n) is multiplicative with a(2^e) = -(1 - (-1)^e) / 2 if e > 0, a(p^e) = Kronecker(5, p)^e if p > 2.

Original entry on oeis.org

1, -1, -1, 0, 0, 1, -1, -1, 1, 0, 1, 0, -1, 1, 0, 0, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, 0, 1, 0, 1, -1, -1, 1, 0, 0, -1, -1, 1, 0, 1, -1, -1, 0, 0, 1, -1, 0, 1, 0, 1, 0, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 0, 0, 1, -1, 0, 1, 0, 1, -1, -1, 1, 0, 0, -1, -1
Offset: 1

Views

Author

Michael Somos, Jun 17 2015

Keywords

Examples

			G.f. = x - x^2 - x^3 + x^6 - x^7 - x^8 + x^9 + x^11 - x^13 + x^14 - x^17 + ...
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := KroneckerSymbol[5, p]^e; f[2, e_] := -(1 - (-1)^e) / 2; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 04 2023 *)
  • PARI
    {a(n) = my(A, p, e); if( !n, 0, A = factor(abs(n)); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, -(e%2), kronecker( 5, p)^e)))};

Formula

a(n) = a(-n) for all n in Z.
a(2*n + 1) = A105368(n). a(4*n + 1) = A080891(n-1). a(4*n + 2) = - A105368(n). a(4*n - 1) = A080891(n+1).
A113185(n) = Sum_{d|n} d * a(d) * -(-1)^(n/d) if n > 0.
G.f.: f(x) - Sum_{k>0} f(x^2^(2*k-1)) where f(x) := x * (1 - x^2) * (1 - x^6) / (1 - x^10).
Showing 1-3 of 3 results.