A113229 Number of permutations avoiding the consecutive pattern 3412.
1, 1, 2, 6, 23, 110, 631, 4223, 32301, 277962, 2657797, 27954521, 320752991, 3987045780, 53372351265, 765499019221, 11711207065229, 190365226548070, 3276401870322033, 59523410471007913, 1138295039078030599, 22856576346825690128, 480807130959249565541
Offset: 0
Keywords
Examples
The 5! - a(5) = 10 permutations on [5] not counted by a(5) are 14523, 24513, 34125, 34512, 35124, 43512, 45123, 45132, 45231, 53412.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..60 from Ray Chandler)
- A. Baxter, B. Nakamura, and D. Zeilberger. Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- V. Dotsenko and A. Khoroshkin, Shuffle algebras, homology, and consecutive pattern avoidance, arXiv preprint arXiv:1109.2690 [math.CO], 2011.
- Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005.
- Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. in Appl. Math. 36 (2006), no. 2, 138-155.
- S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125.
- Steven Finch, Pattern-Avoiding Permutations [Broken link?]
- Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission]
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, `if`(t>0 and j>t, t-j, 0)), j=1..u)+ add(b(u+j-1, o-j, j), j=`if`(t<0,1-t,1)..o)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..25); # Alois P. Heinz, Nov 07 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[t>0 && j>t, t-j, 0]], {j, 1, u}] + Sum[b[u+j-1, o-j, j], {j, Range[If[t<0, 1-t, 1], o]}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
Formula
The Dotsenko et al. reference gives a g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present.
a(n) ~ c * d^n * n!, where d = 0.9561742431150784273897350385923872770208469..., c = 1.1465405299007850875068632404058971045769... . - Vaclav Kotesovec, Aug 23 2014
Comments