cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113231 Ascending descending base exponent transform of triangular numbers (A000217).

Original entry on oeis.org

1, 4, 34, 956, 106721, 75818480, 490656737694, 22960404169011552, 7141530219670856270919, 20319415706020976355219258316, 1104797870481014132439711155738991604
Offset: 1

Views

Author

Jonathan Vos Post, Jan 07 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. Since the parity of the triangular numbers cycles odd, odd, even, even; the parity of this sequence cycles odd, even, even, even. The smallest prime in this sequence is a(5) = 127601. What is the next prime? What is the first triangular value?

Examples

			a(1) = 1 because T(1)^T(1) = 1^1 = 1.
a(2) = 4 because T(1)^T(2) + T(2)^T(1) = 1^3 + 3^1 = 4.
a(3) = 34 = 1^6 + 3^3 + 6^1.
a(4) = 956 = 1^10 + 3^6 + 6^3 + 10^1.
a(5) = 106721 = 1^15 + 3^10 + 6^6 + 10^3 + 15^1.
a(6) = 75818480 = 1^21 + 3^15 + 6^10 + 10^6 + 15^3 + 21^1.
a(7) = 490656737694 = 1^28 + 3^21 + 6^15 + 10^10 + 15^6 + 21^3 + 28^1.
a(8) = 22960404169011552 = 1^36 + 3^28 + 6^21 + 10^15 + 15^10 + 21^6 + 28^3 + 36^1.
a(9) = 7141530219670856270919 = 1^45 + 3^36 + 6^28 + 10^21 + 15^15 + 21^10 + 28^6 + 36^3 + 45^1.
		

Crossrefs

Programs

  • Mathematica
    A000217[n_] := Binomial[n + 1, 2]; Table[Sum[A000217[k]^(A000217[n - k + 1]), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
  • PARI
    for(n=1,10, print1(sum(k=1,n, (binomial(k+1,2))^(binomial(n-k+2,2))), ", ")) \\ G. C. Greubel, May 18 2017

Formula

a(n) = Sum_{i=1..n} (T(i))^(T(n-i+1)), where T(n) are the triangle numbers.
a(n) = Sum_{i=1..n} ((i*(i+1)/2))^((n-i+1)*(n-i+2)/2).
a(n) = Sum_{i=1..n} (A000217(i))^(A000217(n-i+1)).
log(a(n)) ~ n^2 * (-1 + 2*LambertW(2^(-3/2)*exp(1/2)*n))^3 / (8*LambertW(2^(-3/2)*exp(1/2)*n)^2). - Vaclav Kotesovec, Jun 07 2025