cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113257 Ascending descending base exponent transform of squares (A000290).

Original entry on oeis.org

1, 5, 266, 268722, 4682453347, 2978988815561863, 722638800922610642480852, 22529984108212742763058965679103268, 57286470055793196612331429228839529219232484069
Offset: 1

Views

Author

Jonathan Vos Post, Jan 07 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The smallest prime in this sequence is a(2) = 5. What is the next prime? What is the first square value after 1?

Examples

			a(1) = 1 because (1^2)^(1^2) = 1^1 = 1.
a(2) = 5 because (1^2)^(4^1) + (4^1)^(1^4) = 1^4 + 4^1 = 5.
a(3) = 266 = 1^9 + 4^4 + 9^1.
a(4) = 268722 = 1^16 + 4^9 + 9^4 + 16^1.
a(5) = 4682453347 = 1^25 + 4^16 + 9^9 + 16^4 + 25^1.
a(6) = 2978988815561863 = 1^36 + 4^25 + 9^16 + 16^9 + 25^4 + 36^1.
a(7) = 722638800922610642480852 = 1^49 + 4^36 + 9^25 + 16^16 + 25^9 + 36^4 + 49^1.
a(8) = 22529984108212742763058965679103268 = 1^64 + 4^49 + 9^36 + 16^25 + 25^16 + 36^9 + 49^4 + 64^1.
a(9) = 57286470055793196612331429228839529219232484069 = 1^81 + 4^64 + 9^49 + 16^36 + 25^25 + 36^16 + 49^9 + 64^4 + 81^1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k^2)^((n - k + 1)^2), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
  • PARI
    for(n=1,10, print1(sum(k=1,n, (k^2)^((n-k+1)^2) ), ", ")) \\ G. C. Greubel, May 18 2017

Formula

a(n) = Sum_{i=1..n} (i^2)^((n-i+1)^2).
a(n) = Sum_{i=1..n} (A000290(i))^(A000290(n-i+1)).
log(a(n)) ~ n^2 * (-1 + 2*LambertW(exp(1/2)*n/2))^3 / (4*LambertW(exp(1/2)*n/2)^2). - Vaclav Kotesovec, Jun 07 2025

Extensions

a(4) and a(5) corrected by Giovanni Resta, Jun 13 2016