cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113262 One quarter of the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 8, 13, 1, 6, 12, 5, 14, 8, 6, 29, 18, 1, 20, 30, 8, 12, 24, 13, 31, 14, 1, 40, 30, 6, 32, 61, 12, 18, 48, 5, 38, 20, 14, 78, 42, 8, 44, 60, 6, 24, 48, 29, 57, 31, 18, 70, 54, 1, 72, 104, 20, 30, 60, 30, 62, 32, 8, 125, 84, 12, 68, 90, 24, 48, 72, 13, 74, 38, 31
Offset: 1

Views

Author

Michael Somos, Oct 21 2005

Keywords

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223, Entry 3(iv).
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 229.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.3), p. 76, Eq. (31.43).

Crossrefs

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Table[A034896[n]/4, {n, 1, 50}] (* G. C. Greubel, Dec 24 2017 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, # KroneckerSymbol[ 9, #] (-1)^(n + #) &]]; (* Michael Somos, Nov 10 2018 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(9, d) * (-1)^(n-d)))};
    
  • PARI
    {a(n) = my(A, p, e); if(n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==3, 1, (p^(e+1) - 1) / (p - 1) - 2*(p==2))))};

Formula

a(n) is multiplicative with a(3^e) = 1, a(2^e) = 2^(e+1) - 3, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 3.
G.f.: Sum_{k>0} k * x^k / (1 - (-x)^k) * Kronecker(9, k) = ((theta_3(x) * theta_3(x^3))^2 - 1) / 4.
A034896(n) = 4*a(n) if n > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Dec 01 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*(4^(1-s)-2^(1-s)+1)*(1-3^(1-s)). - Amiram Eldar, Jan 06 2023