A113271 Ascending descending base exponent transform of 2^n.
1, 3, 9, 41, 593, 135457, 8606778433, 36893769626691833985, 680564733921105089459460297630318346497, 231584178474632390853419071752762496470716041121409734167406717963826481922561
Offset: 0
Examples
a(0) = 1 because (2^0)^(2^0) = 1^1 = 1. a(1) = 3 = (2^0)^(2^1) + (2^1)^(2^0) = 1^2 + 2^1. a(2) = 9 = (2^0)^(2^2) + (2^1)^(2^1) + (2^2)^(2^0) = 1^4 + 2^2 + 4^1. a(3) = 41 = 1^8 + 2^4 + 4^2 + 8^1. a(4) = 593 = 1^16 + 2^8 + 4^4 + 8^2 + 16^1 a(5) = 135457 = 1^32 + 2^16 + 4^8 + 8^4 + 16^2 + 32^1. a(6) = 8606778433 = 1^64 + 2^32 + 4^16 + 8^8 + 16^4 + 32^2 + 64^1. a(7) = 36893769626691833985 = 1^128 + 2^64 + 4^32 + 8^16 + 16^8 + 32^4 + 64^2 + 128^1. a(8) = 680564733921105089459460297630318346497 = 1^256 + 2^128 + 4^64 + 8^32 + 16^16 + 32^8 + 64^4 + 128^2 + 256^1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..12
Programs
-
Mathematica
Table[Sum[(2^k)^(2^(n - k)), {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, May 19 2017 *)
-
PARI
for(n=0,5, print1(sum(k=0,n, (2^k)^(2^(n-k))), ", ")) \\ G. C. Greubel, May 19 2017
Formula
a(n) = Sum_{i=0..n} (2^i)^(2^(n-i)).
a(n) = Sum_{i=0..n} (2^(n-i))^(2^i).
a(n) ~ 2^(2^(n-1) + 1). - Vaclav Kotesovec, Jun 07 2025
Extensions
a(4) corrected by Giovanni Resta, Jun 13 2016
Formulas corrected by G. C. Greubel, May 19 2017
Comments