cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113271 Ascending descending base exponent transform of 2^n.

Original entry on oeis.org

1, 3, 9, 41, 593, 135457, 8606778433, 36893769626691833985, 680564733921105089459460297630318346497, 231584178474632390853419071752762496470716041121409734167406717963826481922561
Offset: 0

Views

Author

Jonathan Vos Post, Jan 07 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The smallest primes in this (always odd) sequence are a(1) = 3, a(3) = 41 and a(5) = 543. What is the next prime?

Examples

			a(0) = 1 because (2^0)^(2^0) = 1^1 = 1.
a(1) = 3 = (2^0)^(2^1) + (2^1)^(2^0) = 1^2 + 2^1.
a(2) = 9 = (2^0)^(2^2) + (2^1)^(2^1) + (2^2)^(2^0) = 1^4 + 2^2 + 4^1.
a(3) = 41 = 1^8 + 2^4 + 4^2 + 8^1.
a(4) = 593 = 1^16 + 2^8 + 4^4 + 8^2 + 16^1
a(5) = 135457 = 1^32 + 2^16 + 4^8 + 8^4 + 16^2 + 32^1.
a(6) = 8606778433 = 1^64 + 2^32 + 4^16 + 8^8 + 16^4 + 32^2 + 64^1.
a(7) = 36893769626691833985 = 1^128 + 2^64 + 4^32 + 8^16 + 16^8 + 32^4 + 64^2 + 128^1.
a(8) = 680564733921105089459460297630318346497 = 1^256 + 2^128 + 4^64 + 8^32 + 16^16 + 32^8 + 64^4 + 128^2 + 256^1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2^k)^(2^(n - k)), {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, May 19 2017 *)
  • PARI
    for(n=0,5, print1(sum(k=0,n, (2^k)^(2^(n-k))), ", ")) \\ G. C. Greubel, May 19 2017

Formula

a(n) = Sum_{i=0..n} (2^i)^(2^(n-i)).
a(n) = Sum_{i=0..n} (2^(n-i))^(2^i).
a(n) = Sum_{i=0..n} (A000079(i))^(A000079(n-i)).
a(n) ~ 2^(2^(n-1) + 1). - Vaclav Kotesovec, Jun 07 2025

Extensions

a(4) corrected by Giovanni Resta, Jun 13 2016
Formulas corrected by G. C. Greubel, May 19 2017